| miss_var_run | R Documentation |
It us useful to find the number of missing values that occur in a single run.
The function, miss_var_run(), returns a dataframe with the column names
"run_length" and "is_na", which describe the length of the run, and
whether that run describes a missing value.
miss_var_run(data, var)
data |
data.frame |
var |
a bare variable name |
dataframe with column names "run_length" and "is_na", which describe the length of the run, and whether that run describes a missing value.
pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary() miss_var_table() n_complete() n_complete_row() n_miss() n_miss_row() pct_complete() pct_miss() prop_complete() prop_complete_row() prop_miss()
miss_var_run(pedestrian, hourly_counts)
## Not run:
# find the number of runs missing/complete for each month
library(dplyr)
pedestrian %>%
group_by(month) %>%
miss_var_run(hourly_counts)
library(ggplot2)
# explore the number of missings in a given run
miss_var_run(pedestrian, hourly_counts) %>%
filter(is_na == "missing") %>%
count(run_length) %>%
ggplot(aes(x = run_length,
y = n)) +
geom_col()
# look at the number of missing values and the run length of these.
miss_var_run(pedestrian, hourly_counts) %>%
ggplot(aes(x = is_na,
y = run_length)) +
geom_boxplot()
# using group_by
pedestrian %>%
group_by(month) %>%
miss_var_run(hourly_counts)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.