knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(tidyverse) library(tidytext) db <- tools::CRAN_package_db() d <- as_tibble(db, .name_repair = 'unique') tokens <- d %>% select(Package, Title, Description) %>% unite(title_description, Title, Description, sep = ' ') %>% unnest_tokens(word, title_description) clean_tokens <- tokens %>% anti_join(get_stopwords(), by = "word")
query <- 'growt?h?' matches <- clean_tokens %>% filter(str_detect(word, query)) %>% distinct(Package)
Read through
d %>% semi_join(matches, by = "Package") %>% select(Package, Title, Description) %>% gt::gt()
to_exclude <- trible( ~pkg, ~reason, 'AGD', 'AMORE', 'aqp', 'BIOdry', 'childsds', 'chillR', 'BIOdry', 'childsds', 'chillR', 'colorednoise', 'dcv', 'DDM', 'DendroSync', 'dequer', 'Dowd', 'dplRCon', 'Ecohydmod', 'embyrogrowth', 'erer', 'FCGR', 'fcr', 'fdq', 'Fgmutils', 'fishdata', 'forestmangr', 'frambgrowth', 'GDELTtools', 'ggfittext', 'GDELTtools', 'GillespieSSA', # perhaps usefl but orhphaned and oto complicated. 'GlobalFit', # mayb useufl but too complicated 'gym', 'halfcircle', 'imageData', 'InfDim', 'IPMpack', 'iRF', 'ITGM', 'jubilee', 'Lambda4', 'landscapeR', 'LifeHist', 'live', 'memnet', 'MST', 'multilaterals', 'nsRFA', 'numOSL', 'osmose', 'OTE', 'PCMBase', 'PointFore', 'pollen', 'popdemo', 'Pstat', 'quint', randomUniformForest rmutil rpartScore RStorm rtrim sclero SeedCalc SGP SGPdata ShapePattern ShapeSelectForest shelltrace sitreeE sizeMat stocks StratifiedRF streambugs sybilccFBA # flux balance analysis TGS TTCA ufs vegperiod zipfR zscorer ) to_exclude
# install.packages('babar') library(babar) utils::browseVignettes('babar')
Bayesian fit of standard growth models:
Bayesfit()
one of linear, logistic or Baranyi. 3,4,6 parameter variants of baranyi models available.too complicated/unclear if appropriate and I don't understand how to use confidently.
latent growth curve models,
requires I brew install jags
and get the blavaan
and runjags
and rjags
# install.packages('blavaan') # install.packages("runjags") # install.packages("rjags") library(blavaan) # utils::browseVignettes('blavaan') library(runjags) library(rjags) # brew install jags ?bgrowth
model.syntax <- ' # intercept and slope with fixed coefficients i =~ 1*t1 + 1*t2 + 1*t3 + 1*t4 s =~ 0*t1 + 1*t2 + 2*t3 + 3*t4 # regressions i ~ x1 + x2 s ~ x1 + x2 # time-varying covariates t1 ~ c1 t2 ~ c2 t3 ~ c3 t4 ~ c4 ' Demo.growth fit <- bgrowth(model.syntax, data=Demo.growth) summary(fit)
install.packages('cellVolumeDist')
Model innovation/ new product diffusion into a population over time. This seems to be a companion package to the 25 year review published at 10.1016/j.ijforecast.2006.01.005
.
disk diffusion drug resistance microbes on plates.
Just the one function that computes R0 dist from growth rate vector seems interesting.
http://www.repidemicsconsortium.org/epitrix/reference/r2R0.html
has a vignette on growth curve analysis but it is mostly confusing..fits polynomial models..
full on simulation of individual-based models to reconstitue plant-plant interaction dyanmics.
# install.packages('facilitation') library(facilitation) browseVignettes('facilitation') rates <- matrix(c(1,0,2),nrow=1) # parameters must be in a matrix results <- community(maxtime=2,numstages=1,parameters=rates,init=10) results$data %>% ggplot(aes(x,y, label = id)) + geom_text()
The faciliation vignette is great and allows for easy gif generation of spatial animation.
maxt<-40 # this is gonna take a while rates <- matrix(c(0,1,0,2,.7,4, 1,1,0,2,1.2,0, 1,0,6,2,2,0),nrow=3,byrow=T) # maximum stress effect is 4 for stage 1 and 0 for stages 2 and 3 results5 <- community(maxtime=maxt,numstages=3,parameters=rates,init=c(40,0,0), interactionsD=matrix(c(-2,0,0, 0,0,0, 0,0,0),3)) # competition is only between seedlings times <- seq(0,results$maxtime,length.out=20) # array of times of interest spatialanimation(results,times,interval=0.1,movie.name="sim.gif")
fracprolif models of growth data with subset of population that enters quiescnece
population simulation with fisher-wirght model with intermediate saving and implemented in rcpp.
https://arxiv.org/pdf/1210.1773.pdf
library(growcurves) # depends on rcpp armadillo and formaula... browseVignettes('growcurves') # none data(datsim) ## attach(datsim) ## run dpgrow mixed effects model, returning object of class "dpgrow" shape.dp = 4 res = dpgrow(y = datsim$y, subject = datsim$subject, trt = datsim$trt, time = datsim$time, n.random = 3, n.fix_degree = 2, n.iter = 10000, n.burn = 2000, n.thin = 10, shape.dp = shape.dp, option = "dp") ## Each plot is a "ggplot2" object saved in ## a list to plot.results plot.results = plot(res) ## includes subject and ## treatment growth curves ## Extract credible intervals (2.5%, mean, 97.5%). ## Includes fit statistics: Dbar, DIC, pD, lpml. ## Note: DIC is the DIC3 of Celeaux et. al. (2006) ## for option = "dp". Finally, the constructed fixed ## and random effects matrices, X and Z, are returned ## with growth curve covariates appended ## to user submitted nuisance covariates. summary.results = summary(res) ## View the summary results in the console print(summary.results) ## Collect posterior sampled values over ## the (n.iter - n.burn) retained iterations ## for each sampled parameter. samples.posterior = samples(res) ## model residuals (y - fit) residuals = resid(res) ## Model with DP on clients effects, but ## now INCLUDE session random effects ## in a multiple membership construction ## communicated with the N x S matrix, W.subj.aff. ## Returns object, res.mm, of class "dpgrowmm". shape.dp = 4 strength.mm = 0.1 res.mm = dpgrowmm(y = datsim$y, subject = datsim$subject, trt = datsim$trt, time = datsim$time, n.random = 3, Omega = datsim$Omega, group = datsim$group, subj.aff = datsim$subj.aff, W.subj.aff = datsim$W.subj.aff, n.iter = 10000, n.burn = 2000, n.thin = 10, strength.mm = strength.mm, shape.dp = shape.dp, option = "mmcar") plot.results = plot(res.mm)
tumor growth response patterns
solve diff equations to model microbial populations
ordinary least sequare growth cruve trajectories
petitr phenofit PVAClone quantregGrowth sgmodel sicegar sitar statmod # growth curve comparisons testassay # illustrate tools by applying to growth inihibition assay tumgr # tumor growth rate analysis
Vignettes are long form documentation commonly included in packages. Because they are part of the distribution of the package, they need to be as compact as possible. The html_vignette
output type provides a custom style sheet (and tweaks some options) to ensure that the resulting html is as small as possible. The html_vignette
format:
Note the various macros within the vignette
section of the metadata block above. These are required in order to instruct R how to build the vignette. Note that you should change the title
field and the \VignetteIndexEntry
to match the title of your vignette.
The html_vignette
template includes a basic CSS theme. To override this theme you can specify your own CSS in the document metadata as follows:
output: rmarkdown::html_vignette: css: mystyles.css
The figure sizes have been customised so that you can easily put two images side-by-side.
plot(1:10) plot(10:1)
You can enable figure captions by fig_caption: yes
in YAML:
output: rmarkdown::html_vignette: fig_caption: yes
Then you can use the chunk option fig.cap = "Your figure caption."
in knitr.
You can write math expressions, e.g. $Y = X\beta + \epsilon$, footnotes^[A footnote here.], and tables, e.g. using knitr::kable()
.
knitr::kable(head(mtcars, 10))
Also a quote using >
:
"He who gives up [code] safety for [code] speed deserves neither." (via)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.