growthmodels: Compute model output given time and parameters.

Description Usage Arguments Details Value Author(s) References Examples

Description

Compute model output given time and parameters.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
gm_blumberg(t, alpha, w0, m, t0 = 0)

gm_brody(t, alpha, w0, k)

gm_chapmanRichards(t, alpha, beta, k, m)

gm_gompertz(t, alpha, beta, k)

gm_janoschek(t, alpha, beta, b, c)

gm_logistic(t, alpha, beta, k)

gm_loglogistic(t, alpha, beta, k)

gm_mitcherlich(t, alpha, beta, k)

gm_mmf(t, alpha, w0, gamma, m)

gm_monomolecular(t, alpha, beta, k)

gm_negativeExponential(t, alpha, k)

gm_richard(t, alpha, beta, k, m)

gm_schnute(t, r0, beta, k, m)

gm_stannard(t, alpha, beta, k, m)

gm_vonBertalanffy(t, alpha, beta, k, m)

Arguments

t

time

alpha

upper asymptote

w0

a reference value at t = t0, the value at t = 0

m

slope of growth

t0

time shift (default 0)

k

growth rate

beta

growth range

b

growth parameter

c

shape parameter

gamma

parameter that controls the point of inflection

r0

reference value

beta

growth displacement

m

growth rate

Details

Blumberg growth model:

y(t) = ...

Brody growth model:

y(t) = α - (α - w_0) * exp(- k * t)

Chapman-Richards growth model:

y(t) = α * (1 - β * exp(-k * t)^{1/(1-m)})

Gompertz growth model:

y(t) = α * exp(-β * exp(-k^t))

Janoschek growth model:

y(t) = α *(α - β) \exp(-b * t^c))

Logistic growth model:

y(t) = α/(1 + β * exp(-k * t))

Log-logistic growth model:

y(t) = α/(1 + β * exp(-k * log(t))

Mitcherlich growth model:

y(t) = α - β * k^t

Morgan-Mercer-Flodin growth model:

y(t) = (w_0 * γ + α * t^m) / (γ + t^m)

Monomolecular growth model:

y(t) = α * ( 1 - β * exp(-k * t))

Negative exponential growth model:

y(t) = α * ( 1 - exp(-k * t))

Richard growth model:

y(t) = α/((1 + β * exp(-k * t))^(1 / m))

Schnute growth model:

y(t) = (r_0 + β * exp(k * t))^m

Stannard growth model:

y(t) = α *( 1 + exp(-(beta + k * t)/m))^(-m)

von Bertalanffy growth model:

y(t) = (α^(1-m) - β * exp(-k * t))^(1/(1-m))

Value

y-values of the specified model for given time points.

Author(s)

Daniel Rodriguez

References

M. M. Kaps, W. O. W. Herring, and W. R. W. Lamberson, "Genetic and environmental parameters for traits derived from the Brody growth curve and their relationships with weaning weight in Angus cattle.," Journal of Animal Science, vol. 78, no. 6, pp. 1436-1442, May 2000.

D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.

Michael J. Panik, "Growth Curve Modeling: Theory and Applications", John Wiley & Sons, December 2013.

A. Khamiz, Z. Ismail, and A. T. Muhammad, "Nonlinear growth models for modeling oil palm yield growth," Journal of Mathematics and Statistics, vol. 1, no. 3, p. 225, 2005.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
gm_blumberg(0:10, 10, 2, 0.5)

gm_brody(0:10, 10, 5, 0.3)

gm_chapmanRichards(0:10, 10, 0.5, 0.3, 0.5)

gm_gompertz(0:10, 10, 0.5, 0.3)

gm_janoschek(0:10, 10, 2, 0.5, 2)

gm_logistic(0:10, 10, 0.5, 0.3)

gm_loglogistic(0:10, 10, 0.5, 0.3)

gm_mitcherlich(0:10, 10, 0.5, 0.3)

gm_mmf(0:10, 10, 0.5, 4, 1)

gm_monomolecular(0:10, 10, 0.5, 0.3)

gm_negativeExponential(0:10, 1, 0.3)

gm_schnute(0:10, 10, 5, .5, .5)

gm_stannard(0:10, 1, .2, .1, .5)

gm_vonBertalanffy(0:10, 10, 0.5, 0.3, 0.5)

npjc/growr documentation built on Nov. 9, 2019, 7:29 a.m.