Description Usage Arguments Details Value Author(s) References Examples
Compute model output given time and parameters.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | gm_blumberg(t, alpha, w0, m, t0 = 0)
gm_brody(t, alpha, w0, k)
gm_chapmanRichards(t, alpha, beta, k, m)
gm_gompertz(t, alpha, beta, k)
gm_janoschek(t, alpha, beta, b, c)
gm_logistic(t, alpha, beta, k)
gm_loglogistic(t, alpha, beta, k)
gm_mitcherlich(t, alpha, beta, k)
gm_mmf(t, alpha, w0, gamma, m)
gm_monomolecular(t, alpha, beta, k)
gm_negativeExponential(t, alpha, k)
gm_richard(t, alpha, beta, k, m)
gm_schnute(t, r0, beta, k, m)
gm_stannard(t, alpha, beta, k, m)
gm_vonBertalanffy(t, alpha, beta, k, m)
|
t |
time |
alpha |
upper asymptote |
w0 |
a reference value at t = t0, the value at t = 0 |
m |
slope of growth |
t0 |
time shift (default 0) |
k |
growth rate |
beta |
growth range |
b |
growth parameter |
c |
shape parameter |
gamma |
parameter that controls the point of inflection |
r0 |
reference value |
beta |
growth displacement |
m |
growth rate |
Blumberg growth model:
y(t) = ...
Brody growth model:
y(t) = α - (α - w_0) * exp(- k * t)
Chapman-Richards growth model:
y(t) = α * (1 - β * exp(-k * t)^{1/(1-m)})
Gompertz growth model:
y(t) = α * exp(-β * exp(-k^t))
Janoschek growth model:
y(t) = α *(α - β) \exp(-b * t^c))
Logistic growth model:
y(t) = α/(1 + β * exp(-k * t))
Log-logistic growth model:
y(t) = α/(1 + β * exp(-k * log(t))
Mitcherlich growth model:
y(t) = α - β * k^t
Morgan-Mercer-Flodin growth model:
y(t) = (w_0 * γ + α * t^m) / (γ + t^m)
Monomolecular growth model:
y(t) = α * ( 1 - β * exp(-k * t))
Negative exponential growth model:
y(t) = α * ( 1 - exp(-k * t))
Richard growth model:
y(t) = α/((1 + β * exp(-k * t))^(1 / m))
Schnute growth model:
y(t) = (r_0 + β * exp(k * t))^m
Stannard growth model:
y(t) = α *( 1 + exp(-(beta + k * t)/m))^(-m)
von Bertalanffy growth model:
y(t) = (α^(1-m) - β * exp(-k * t))^(1/(1-m))
y-values of the specified model for given time points.
Daniel Rodriguez
M. M. Kaps, W. O. W. Herring, and W. R. W. Lamberson, "Genetic and environmental parameters for traits derived from the Brody growth curve and their relationships with weaning weight in Angus cattle.," Journal of Animal Science, vol. 78, no. 6, pp. 1436-1442, May 2000.
D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.
Michael J. Panik, "Growth Curve Modeling: Theory and Applications", John Wiley & Sons, December 2013.
A. Khamiz, Z. Ismail, and A. T. Muhammad, "Nonlinear growth models for modeling oil palm yield growth," Journal of Mathematics and Statistics, vol. 1, no. 3, p. 225, 2005.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | gm_blumberg(0:10, 10, 2, 0.5)
gm_brody(0:10, 10, 5, 0.3)
gm_chapmanRichards(0:10, 10, 0.5, 0.3, 0.5)
gm_gompertz(0:10, 10, 0.5, 0.3)
gm_janoschek(0:10, 10, 2, 0.5, 2)
gm_logistic(0:10, 10, 0.5, 0.3)
gm_loglogistic(0:10, 10, 0.5, 0.3)
gm_mitcherlich(0:10, 10, 0.5, 0.3)
gm_mmf(0:10, 10, 0.5, 4, 1)
gm_monomolecular(0:10, 10, 0.5, 0.3)
gm_negativeExponential(0:10, 1, 0.3)
gm_schnute(0:10, 10, 5, .5, .5)
gm_stannard(0:10, 1, .2, .1, .5)
gm_vonBertalanffy(0:10, 10, 0.5, 0.3, 0.5)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.