Description Usage Arguments Details Value See Also Examples
Cumulative estimation of the volume or phytomass of groups of trees is just
the summation of the values computed with INFCvpe()
, but the computation of
accuracy estimates is improved using these summation functions.
Two approaches are available.
Via INFCvpe_summarise()
that processes and returns a data frame
or by following aggregation functions within a standard summarise()
:
INFCvpe_sum()
INFCvpe_ConfInt()
INFCvpe_OutOfDomain()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | INFCvpe_summarise(
in.data,
EPPOcode_C,
dbh_C,
h_tot_C,
quantity = "vol",
p = 0.95
)
INFCvpe_sum(EPPOcode, dbh, h_tot, quantity = "vol")
INFCvpe_ConfInt(EPPOcode, dbh, h_tot, quantity = "vol", p = 0.95)
INFCvpe_OutOfDomain(EPPOcode, dbh, h_tot)
|
in.data |
A dataframe (or tibble) containing tally data to be matched with "EPPOcode_C", "dbh_C" and "htot_C" arguments |
EPPOcode_C |
A string, the name of the column in |
dbh_C |
A string, the name of the column in |
h_tot_C |
A string, the name of the column in |
quantity |
(default =
|
p |
(default OPZIONE 2 |
EPPOcode |
A character vector with the species EPPO codes (with length = 1 or length = length(dbh)) |
dbh |
A numeric vector with the brest height diameter values |
h_tot |
A numeric vector with the tree total height values (with length = 1 or length = length(dbh)) |
Functions developed following Tabacchi et al. (2011). Relevant excerpt are collected in the INFCvpeSUM_theoryAndExamples.pdf file. NOTA: vedi https://trello.com/c/PCaZZFe4)
INFCvpe_summarise()
returns a dataframe (tibble) with
the grouping columns defined with group_by()
, and the following columns:
quantity
: as additional grouping column,
n
: number of trees in the group,
n_out
: the number of (dbh, htot)
pairs that are 'out of the domain',
est
: the estimated value,
cihw
: confidence interval half width
p
: probability used computing cihw
INFCvpe_SUM
- the functions of this family return a numeric vector,
aggregating rows within the same group,
INFCvpe_sum()
returns the sum of the estimated quantities,
INFCvpe_ConfInt()
returns 'confidence interval half width',
INFCvpe_OutOfDomain()
returns the number of 'out of domain'
(dhb, h_tot)
pairs included in the summation
INFCvpe()
to compute individual estimates, with detailed accuracy evaluation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | tst <- dplyr::tribble(
~UC, ~specie, ~d130, ~h_dendro,
# Example data in Tabacchi et al. (2011) pag. 25
"U1","ACROP",10,7,
"U1","ACROP",15,9,
"U1","ACROP",20,12,
"U1","ACROP",30,20,
"U1","ACROP",32,21,
"U1","ACROP",24,18,
"U1","ACROP",36,21,
"U1","ACROP",40,22,
"U1","ACROP",8,8,
"U1","ACROP",18,12,
# Example continuation, pag. 27
"U2","ABIAL",38,21,
"U2","ABIAL",52,28,
"U2","FAUSY",25,16,
"U2","FAUSY",30,18,
"U2","FAUSY",12,10,
# Extra line, to test 'out of domain'
"U2","ABIAL",5,32)
tst %>%
dplyr::filter(!(d130 == 5 & h_dendro == 32)) %>%
dplyr::group_by(specie) %>%
INFCvpe_summarise("specie", "d130", "h_dendro") %>%
dplyr::ungroup() %>%
dplyr::mutate(specie = factor(specie,
levels = c("ACROP", "ABIAL", "FAUSY"),
labels = c("aceri", "abete bianco", "faggio"),
ordered = TRUE),
dplyr::across(c("est", "cihw"), ~round(.x, 1))
) %>%
dplyr::select(specie, est, cihw) %>%
dplyr::arrange(specie) %>%
t()
# ForIT (ver 2) output
# specie "aceri" "abete bianco" "faggio"
# est "4623.0" "4044.2" "1079.4"
# cihw "567.5" "661.2" "275.4"
# In (Tabacchi et al., 2011, 'Tabella 2')
# specie "aceri" "abete bianco" "faggio"
# est "4623.0" "4044.2" "1079.4"
# cihw "567.4" "662.4" "279.2"
# Using 'INFCvpe_summarise()'
tst %>%
INFCvpe_summarise("specie", "d130", "h_dendro", quantity = c("vol", "dw4"))
tst %>%
dplyr::mutate(cld = ceiling(d130/5)*5) %>%
dplyr::group_by(UC, specie, cld) %>%
INFCvpe_summarise("specie", "d130", "h_dendro")
tst %>%
dplyr::group_by(UC) %>%
INFCvpe_summarise("specie", "d130", "h_dendro", quantity = "dw4")
# Using 'INFCvpeSUM' aggregation functions
tst %>%
dplyr::group_by(UC) %>%
dplyr::summarise(
n_stems = dplyr::n(),
OoD = INFCvpe_OutOfDomain(specie, d130, h_dendro),
dw4 = INFCvpe_sum(specie, d130, h_dendro, quantity = "dw4"),
dw4_ConfInt = INFCvpe_ConfInt(specie, d130, h_dendro, quantity = "dw4")
)
tst %>%
dplyr::group_by(UC) %>%
dplyr::summarise(
n_stems = dplyr::n(),
OoD = INFCvpe_OutOfDomain(specie, d130, h_dendro),
vol = INFCvpe_sum(specie, d130, h_dendro),
vol_ConfInt = INFCvpe_ConfInt(specie, d130, h_dendro)
)
rm(tst)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.