INFCvpeSUM: Estimate tree bole volume or phytomass for stems groups, with...

Description Usage Arguments Details Value See Also Examples

Description

Cumulative estimation of the volume or phytomass of groups of trees is just the summation of the values computed with INFCvpe(), but the computation of accuracy estimates is improved using these summation functions.
Two approaches are available.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
INFCvpe_summarise(
  in.data,
  EPPOcode_C,
  dbh_C,
  h_tot_C,
  quantity = "vol",
  p = 0.95
)

INFCvpe_sum(EPPOcode, dbh, h_tot, quantity = "vol")

INFCvpe_ConfInt(EPPOcode, dbh, h_tot, quantity = "vol", p = 0.95)

INFCvpe_OutOfDomain(EPPOcode, dbh, h_tot)

Arguments

in.data

A dataframe (or tibble) containing tally data to be matched with "EPPOcode_C", "dbh_C" and "htot_C" arguments

EPPOcode_C

A string, the name of the column in in.data with the species EPPO codes

dbh_C

A string, the name of the column in in.data with the brest height diameter values

h_tot_C

A string, the name of the column in in.data with the tree total height values

quantity

(default = "vol") A character vector specifying required quantity/ies: c("vol", "dw1" : "dw4"). Use qantities() to decode definitions.

  • for INFCvpe_summarise(), if length(unique(quantity)) > 1, rows in in.data will be replicated for each value.

  • for INFCvpe_SUM functions, length(quantity) must be 1

p

(default p = 95%) probability used to compute cihw (with length = 1 or length = length(dbh))

OPZIONE 2 INFCvpe_SUM functions:

EPPOcode

A character vector with the species EPPO codes (with length = 1 or length = length(dbh))

dbh

A numeric vector with the brest height diameter values

h_tot

A numeric vector with the tree total height values (with length = 1 or length = length(dbh))

Details

Functions developed following Tabacchi et al. (2011). Relevant excerpt are collected in the INFCvpeSUM_theoryAndExamples.pdf file. NOTA: vedi https://trello.com/c/PCaZZFe4)

Value

See Also

INFCvpe() to compute individual estimates, with detailed accuracy evaluation

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
tst <- dplyr::tribble(
  ~UC, ~specie, ~d130, ~h_dendro,
  # Example data in Tabacchi et al. (2011) pag. 25
  "U1","ACROP",10,7,
  "U1","ACROP",15,9,
  "U1","ACROP",20,12,
  "U1","ACROP",30,20,
  "U1","ACROP",32,21,
  "U1","ACROP",24,18,
  "U1","ACROP",36,21,
  "U1","ACROP",40,22,
  "U1","ACROP",8,8,
  "U1","ACROP",18,12,

  # Example continuation, pag. 27
  "U2","ABIAL",38,21,
  "U2","ABIAL",52,28,
  "U2","FAUSY",25,16,
  "U2","FAUSY",30,18,
  "U2","FAUSY",12,10,

  # Extra line, to test 'out of domain'
  "U2","ABIAL",5,32)

tst %>%
  dplyr::filter(!(d130 == 5 & h_dendro == 32)) %>%
  dplyr::group_by(specie) %>%
  INFCvpe_summarise("specie", "d130", "h_dendro") %>%
  dplyr::ungroup() %>%
  dplyr::mutate(specie = factor(specie,
                         levels = c("ACROP", "ABIAL", "FAUSY"),
                         labels = c("aceri", "abete bianco", "faggio"),
                         ordered = TRUE),
                dplyr::across(c("est", "cihw"), ~round(.x, 1))
         ) %>%
  dplyr::select(specie, est, cihw) %>%
  dplyr::arrange(specie) %>%
  t()
# ForIT (ver 2) output
# specie "aceri"  "abete bianco" "faggio"
# est    "4623.0" "4044.2"       "1079.4"
# cihw   "567.5"  "661.2"        "275.4"

# In (Tabacchi et al., 2011, 'Tabella 2')
# specie "aceri"  "abete bianco" "faggio"
# est    "4623.0" "4044.2"       "1079.4"
# cihw   "567.4"  "662.4"        "279.2"

# Using 'INFCvpe_summarise()'
tst %>%
  INFCvpe_summarise("specie", "d130", "h_dendro", quantity = c("vol", "dw4"))

tst %>%
  dplyr::mutate(cld = ceiling(d130/5)*5) %>%
  dplyr::group_by(UC, specie, cld) %>%
  INFCvpe_summarise("specie", "d130", "h_dendro")

tst %>%
  dplyr::group_by(UC) %>%
  INFCvpe_summarise("specie", "d130", "h_dendro", quantity = "dw4")

# Using 'INFCvpeSUM' aggregation functions
tst %>%
  dplyr::group_by(UC) %>%
  dplyr::summarise(
    n_stems = dplyr::n(),
    OoD = INFCvpe_OutOfDomain(specie, d130, h_dendro),
    dw4 = INFCvpe_sum(specie, d130, h_dendro, quantity = "dw4"),
    dw4_ConfInt = INFCvpe_ConfInt(specie, d130, h_dendro, quantity = "dw4")
  )

tst %>%
  dplyr::group_by(UC) %>%
  dplyr::summarise(
    n_stems = dplyr::n(),
    OoD = INFCvpe_OutOfDomain(specie, d130, h_dendro),
    vol = INFCvpe_sum(specie, d130, h_dendro),
    vol_ConfInt = INFCvpe_ConfInt(specie, d130, h_dendro)
  )
rm(tst)

npuletti/ForIT documentation built on Dec. 29, 2021, 7:50 a.m.