pima: Calculating Prediction Intervals

Description Usage Arguments Details Value References See Also Examples

View source: R/pima-.r

Description

This function can estimate prediction intervals (PIs) as follows: A parametric bootstrap PI based on confidence distribution (Nagashima et al., 2018). A parametric bootstrap confidence interval is also calculated based on the same sampling method for bootstrap PI. The Higgins–Thompson–Spiegelhalter (2009) prediction interval. The Partlett–Riley (2017) prediction intervals.

Usage

1
2
3
4
5
pima(y, se, v = NULL, alpha = 0.05, method = c("boot", "HTS", "HK",
  "SJ", "KR", "CL", "APX", "WL"), theta0 = 0, side = c("lt", "gt"),
  B = 25000, parallel = FALSE, seed = NULL, maxit1 = 1e+05,
  eps = 10^(-10), lower = 0, upper = 1000, maxit2 = 1000,
  tol = .Machine$double.eps^0.25, rnd = NULL, maxiter = 100)

Arguments

y

the effect size estimates vector

se

the within studies standard error estimates vector

v

the within studies variance estimates vector

alpha

the alpha level of the prediction interval

method

the calculation method for the pretiction interval (default = "boot").

  • boot: A parametric bootstrap prediction interval (Nagashima et al., 2018).

  • HTS: the Higgins–Thompson–Spiegelhalter (2009) prediction interval / (the DerSimonian & Laird estimator for τ^2 with an approximate variance estimator for the average effect, (1/∑{\hat{w}_i})^{-1}, df=K-2).

  • HK: Partlett–Riley (2017) prediction interval (the REML estimator for τ^2 with the Hartung (1999)'s variance estimator [the Hartung and Knapp (2001)'s estimator] for the average effect, df=K-2).

  • SJ: Partlett–Riley (2017) prediction interval / (the REML estimator for τ^2 with the Sidik and Jonkman (2006)'s bias coreccted variance estimator for the average effect, df=K-2).

  • KR: Partlett–Riley (2017) prediction interval / (the REML estimator for τ^2 with the Kenward and Roger (1997)'s approach for the average effect, df=ν-1).

  • APX: Partlett–Riley (2017) prediction interval / (the REML estimator for τ^2 with an approximate variance estimator for the average effect, df=K-2). for the average effect, df=ν-1).

  • WL: Wang–Lee (2019) prediction interval / (a method of sample quantiles of ensemble estimates).

theta0

threshold θ_0, for the cumulative probability of effect θ_{new} less or greater than θ_0; \Pr(θ_{new} < θ_0) or \Pr(θ_{new} > θ_0).

side

either the cumulative probability of effect less (default = "lt") or greater ("gt") then θ_0

B

the number of bootstrap samples

parallel

the number of threads used in parallel computing, or FALSE that means single threading

seed

set the value of random seed

maxit1

the maximum number of iteration for the exact distribution function of Q

eps

the desired level of accuracy for the exact distribution function of Q

lower

the lower limit of random numbers of τ^2

upper

the upper limit of random numbers of τ^2

maxit2

the maximum number of iteration for numerical inversions

tol

the desired level of accuracy for numerical inversions

rnd

a vector of random numbers from the exact distribution of τ^2

maxiter

the maximum number of iteration for REML estimation

Details

The functions bootPI, pima_boot, pima_hts, htsdl, pima_htsreml, htsreml are deprecated, and integrated to the pima function.

Value

References

Higgins, J. P. T, Thompson, S. G., Spiegelhalter, D. J. (2009). A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc. 172(1): 137-159. https://doi.org/10.1111/j.1467-985X.2008.00552.x

Partlett, C, and Riley, R. D. (2017). Random effects meta-analysis: Coverage performance of 95 confidence and prediction intervals following REML estimation. Stat Med. 36(2): 301-317. https://doi.org/10.1002/sim.7140

Nagashima, K., Noma, H., and Furukawa, T. A. (2019). Prediction intervals for random-effects meta-analysis: a confidence distribution approach. Stat Methods Med Res. 28(6): 1689-1702. https://doi.org/10.1177/0962280218773520.

Wang, C-C and Lee, W-C. (2019). A simple method to estimate prediction intervals and predictive distributions. Res Syn Meth. 30(28): 3304-3312. https://doi.org/10.1002/jrsm.1345.

Hartung, J. (1999). An alternative method for meta-analysis. Biom J. 41(8): 901-916. https://doi.org/10.1002/(SICI)1521-4036(199912)41:8<901::AID-BIMJ901>3.0.CO;2-W.

Hartung, J., and Knapp, G. (2001). On tests of the overall treatment effect in meta-analysis with normally distributed responses. Stat Med. 20(12): 1771-1782. https://doi.org/10.1002/sim.791.

Sidik, K., and Jonkman, J. N. (2006). Robust variance estimation for random effects meta-analysis. Comput Stat Data Anal. 50(12): 3681-3701. https://doi.org/10.1016/j.csda.2005.07.019.

Kenward, M. G., and Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics. 53(3): 983-997. https://www.ncbi.nlm.nih.gov/pubmed/9333350.

DerSimonian, R., and Laird, N. (1986). Meta-analysis in clinical trials. Control Clin Trials. 7(3): 177-188.

See Also

print.pima, plot.pima, cima.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
data(sbp, package = "pimeta")

# Nagashima-Noma-Furukawa prediction interval
# is sufficiently accurate when I^2 >= 10% and K >= 3
pimeta::pima(sbp$y, sbp$sigmak, seed = 3141592, parallel = 4)

# Higgins-Thompson-Spiegelhalter prediction interval and
# Partlett-Riley prediction intervals
# are accurate when I^2 > 30% and K > 25
pimeta::pima(sbp$y, sbp$sigmak, method = "HTS")
pimeta::pima(sbp$y, sbp$sigmak, method = "HK")
pimeta::pima(sbp$y, sbp$sigmak, method = "SJ")
pimeta::pima(sbp$y, sbp$sigmak, method = "KR")
pimeta::pima(sbp$y, sbp$sigmak, method = "APX")

nshi-stat/pimeta documentation built on May 5, 2020, 8:01 p.m.