devtools::install_github("ntels-BI/ntelsBI")
ml()
함수를 이용하여 기계학습 훈련 및 평가를 수행
iris
꽃잎분류ml(iris, "Species", method = "rpart") %>% fitSummary(type = "cla")
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 15 0 0
## versicolor 0 12 1
## virginica 0 3 14
##
## Overall Statistics
##
## Accuracy : 0.9111
## 95% CI : (0.7878, 0.9752)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : 8.467e-16
##
## Kappa : 0.8667
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 0.8000 0.9333
## Specificity 1.0000 0.9667 0.9000
## Pos Pred Value 1.0000 0.9231 0.8235
## Neg Pred Value 1.0000 0.9062 0.9643
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.2667 0.3111
## Detection Prevalence 0.3333 0.2889 0.3778
## Balanced Accuracy 1.0000 0.8833 0.9167
Sonar
의 Class
분류 (Class = "R" 이 주관심사일 경우)data(Sonar, package = "mlbench")
ml(Sonar, "Class", method = "glm") %>% fitSummary(type = "cla", positive = "R")
## Confusion Matrix and Statistics
##
## Reference
## Prediction M R
## M 22 9
## R 11 20
##
## Accuracy : 0.6774
## 95% CI : (0.5466, 0.7906)
## No Information Rate : 0.5323
## P-Value [Acc > NIR] : 0.01444
##
## Kappa : 0.3548
## Mcnemar's Test P-Value : 0.82306
##
## Sensitivity : 0.6897
## Specificity : 0.6667
## Pos Pred Value : 0.6452
## Neg Pred Value : 0.7097
## Prevalence : 0.4677
## Detection Rate : 0.3226
## Detection Prevalence : 0.5000
## Balanced Accuracy : 0.6782
##
## 'Positive' Class : R
##
mtcars
mpg 예측ml(mtcars, "mpg", method = "rf") %>% fitSummary(type = "reg")
## [1] 10.91898
spCoordinateTrans()
function : 위경도 좌표변환exdata <- data.frame(long = c(1039197, 1041137, 1039216, 1037176),
lat = c(1926417, 1927056, 1927526, 1924963))
exdata # UTM-K(GRS-80)
## long lat
## 1 1039197 1926417
## 2 1041137 1927056
## 3 1039216 1927526
## 4 1037176 1924963
spCoordinateTrans(exdata$long, exdata$lat) # To WGS84
## long lat
## 1 127.9425 37.33594
## 2 127.9644 37.34161
## 3 127.9428 37.34593
## 4 127.9196 37.32292
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.