Description Usage Arguments Value Examples
ml
class <ec><9d><b8> <ed><95><99><ec><8a><b5><ea><b2><b0><ea><b3><bc> <eb><b0><8f> <ed><85><8c><ec><8a><a4><ed><8a><b8><ec><85><8b><ec><9d><84> <ec><9d><b4><ec><9a><a9><ed><95><98><ec><97><ac> Classification <ec><9d><bc> <ea><b2><bd><ec><9a><b0> <ed><98><bc><eb><8f><88><eb><a9><94><ed><8a><b8><eb><a6><ad><ec><8a><a4>, Regression <ec><9d><bc> <ea><b2><bd><ec><9a><b0> MSE <ea><b0><80> <eb><b0><98><ed><99><98><eb><90><98><eb><a9><b0> type
<ec><9d><b8><ec><9e><90><eb><a5><bc> <ed><86><b5><ed><95><b4> Classification <ec><9d><b8><ec><a7><80> Regression <ec><9d><b8><ec><a7><80> <ec><84><a0><ed><83><9d><ed><95><a9><eb><8b><88><eb><8b><a4>.
1 2 |
fitObject |
a "ml" class object |
testset |
if new testset |
method |
choice machine learning algorithm method |
fitImage |
a character. Input filename for chaching fit Object |
type
if "cla", confusion matrix. else "reg" numeric of MSE
1 2 | fit <- ml(iris, "Species")
fitSummary(fit, type = "cla")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.