#' Make all the maps for a data set
#'
#' @param d wide-format data set (see make_wide)
#' @param locations lats and longs of the locations (data frame with three columns Location, Longitude, Latitude)
#' @param bounding_box bounding box for map: bottom left long, lat; top right long, lat, longitudes W negative
#' @param zoom zoom for map; higher requires more map tiles, but produces better map. Default 5.
#' @param scaling global scaling factor for points on Theil-Sen map, default 1
#' @param n_cluster number of clusters to use for Ward and K-means maps
#'
#' @return list of maps (including scree plot and dendrograms)
#'
#' @author Ken Butler, \email{butler@utsc.utoronto.ca}
#'
#' @examples
#'
#' make_spatial(nine_points, nine_points_locations, n_cluster=4)
#' make_spatial(nine_points, nine_points_locations, bounding_box=c(-87.5, 71, -82.5, 74), zoom=6, scaling=1, n_cluster=4)
#'
#' @export
#'
make_spatial <- function(d, locations, bounding_box=F, zoom=5, scaling=1, n_cluster) {
# general map
g1 <- draw_map(locations=locations, bounding_box=bounding_box, zoom=zoom)
# make long data
d_long <- make_long(d)
# Mann-Kendall map
g2 <- mk_map(d_long, locations, bounding_box, zoom)
# Theil-Sen map
g3 <- theil_sen_map(d_long, locations, bounding_box=bounding_box, zoom=zoom, scaling=scaling)
# Ward missings-included clustering and map
w <- ward(d, F, n_cluster)
g4 <- w$dendrogram
g5 <- map_cluster(w$clusters, locations, bounding_box, zoom, title="Ward missings included")
# Ward missings-excluded clustering and map
w2 <- ward(d, T, n_cluster)
g6 <- w$dendrogram
g7 <- map_cluster(w$clusters, locations, bounding_box, zoom, title="Ward missings excluded")
# K-means and map
k <- k_means(d, n_cluster)
g8 <- k$scree
g9 <- map_cluster(k$clusters, locations, bounding_box, zoom, title="K-means")
return(list(g1, g2, g3, g4, g5, g6, g7, g8, g9))
}
#' Make temporal analysis without maps (in first part of spatial analysis)
#'
#' @param d wide-format data set
#'
#' @return list: time trend plots with lowess curves and with linear trends, Mann-Kendall result table, summary of significance, Theil-Sen slopes table, summary.
#' @author Ken Butler, \email{butler@utsc.utoronto.ca}
#'
#' @examples
#'
#' make_temporal(nine_points)
#'
#' @export
#'
make_temporal <- function(d) {
d_long <- make_long(d)
g1 <- time_trend_plot(d_long, lowess=TRUE)
g2 <- time_trend_plot(d_long, lowess=FALSE)
mk_table <- mann_kendall_table(d_long)
mk_sig_summary <- mk_sig(d_long)
ts_slopes <- theil_sen_slopes(d_long)
ts_summary <- theil_sen_summary(d_long)
list(g1, g2, mk_table, mk_sig_summary, ts_slopes, ts_summary)
}
#' Make the whole analysis for a data set
#'
#' @param d wide-format data set (see make_wide)
#' @param locations lats and longs of the locations (data frame with three columns Location, Longitude, Latitude)
#' @param bounding_box bounding box for map: bottom left long, lat; top right long, lat, longitudes W negative. Defaults to FALSE; then determined from data.
#' @param zoom zoom for map; higher requires more map tiles, but produces better map. Default 5, max 18.
#' @param scaling global scaling factor for points on Theil-Sen map, default 1 (bigger makes all points bigger)
#' @param n_cluster number of clusters to use for Ward and K-means maps
#' @return list of 2: the temporal results from nake_temporal; the spatial results from make_spatial.
#'
#' @author Ken Butler, \email{butler@utsc.utoronto.ca}
#'
#' @examples
#'
#' make_everything(nine_points, nine_points_locations, n_cluster=4)
#'
#' @export
#'
make_everything=function(d, locations, bounding_box=F, zoom=5, scaling=1, n_cluster) {
l1 <- make_temporal(d)
l2 <- make_spatial(d, locations, bounding_box, zoom, scaling, n_cluster)
list(temporal=l1, spatial=l2)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.