pqcomp: Principal Quantile Components

Description Usage Arguments Value Examples

Description

Calculate principal quantile components (PQC) via smooth approximation of the asymmetric L1-Norm.

Usage

1
2
3
4
pqcomp(data, projDim, tau, lambda, muEst = TRUE,
  epsilon = 1/log10(nrow(data)), iterTol = 200, convTol = NA,
  preOut = NA, progBar = TRUE, doPar = FALSE, doSeq = FALSE,
  randomSeed = NA)

Arguments

data

data matrix with rows as data entries and columns as variables

projDim

no. of desired principal components

tau

regulization parameter

lambda

regulization parameter

muEst

calculate a constant mu

epsilon

approxiamtion parameter

iterTol

no. of max iterataions

convTol

set algorithm to stop if weigths did not change for convTol no. of consecutive iterations (deactivated for tau=0.5)

preOut

continues based on previous output (if doSeq is TRUE, the components of a previos PCA method are sufficient)

progBar

optional progressbar

doPar

use parallel backend (*nix systems recommended),

doSeq

run via sequential optimization

randomSeed

select a random seed as in set.seed for fixed initialization

Value

list object containing components and loadings

Examples

1
2
3
4
5
# generating data
n = 100
X = data.frame(cbind(rnorm(n),rnorm(n),rnorm(n)))
# running the main method
pqcomp(data = X, projDim = 2, tau =  0.9, lambda = 0.1, muEst = T)

obleeker/quant.pca documentation built on July 7, 2019, 12:41 a.m.