Description Usage Arguments Details Value See Also Examples
Given time to event data, a set of cuts and a sequence of penalty values, returns the adaptive ridge or the ridge estimator of the log-hazard.
1 2 3 |
time |
the observed time data. |
status |
status of the time data. TRUE for true time and FALSE for censored time. |
cuts |
a sequence of cuts. Default to NULL which corresponds to the exponential model. |
weights |
an optional weight sequence. Default to 1. Should be of the size of time and status. |
pen |
a sequence of penalty values. |
a |
the log-hazard value at the initialization step. Default to the unpenalized log-hazard estimator. |
AR |
do you want to compute the adaptive-ridge? If FALSE compute the ridge estimator. Default to TRUE. |
w |
the w sequence values for the adaptive ridge algorithm at the initialization step. Default to 1. Should be of the size of the cuts. |
tol |
the tolerance parameter for convergence of the algorithm. Default to 1e-7. |
itermax |
the maximum number of iterations. If the algorithm has not converged before itermax iterations then the algorithm exits the program. Default to 1e+5. |
CI |
should the confidence intervals be computed? Default to TRUE. |
alphaCI |
the value of alpha for 1-alpha confidence intervals. Default to 0.05. |
logtransf |
should the confidence intervals be computed using the log-transformtation? Default to TRUE. |
The adaptive-ridge algorithm is run for the sequence of penalty values pen
. The final adaptive-ridge estimator final.a
is found
by minimising a Bayesian Information Criteria (BIC). The res
list returned from the function contains all the
estimators (adaptive-ridge or ridge) for each penalty value. Write res[[pos]]
to get the estimator for the
penalty corresponding to pen[pos]
. Use the option AR to choose between the ridge or adaptive-ridge estimator.
For the ridge estimator only res is not null.Confidence intervals are computed for the final adaptive-ridge hazard estimator.
res | the list of adaptive-ridge estimators for each penalty value | |
final.a | the final log-hazard that minimizes the BIC | |
final.cuts | the final cut vector found from the BIC | |
bic | the minimal value of the BIC | |
pos | the position of the penalty that minimizes the BIC | |
CIleft | the left confidence intervals for the final hazard | |
CIright | the right confidence intervals for the final hazard | |
Other pchsurv functions: bootpchsurv
,
mlepchsurv
, pchsurv
,
rsurv
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | set.seed(45)
n=400
cuts=c(20,40,50,70)
alpha=c(0,0.05,0.1,0.2,0.4)/10
time=rsurv(n,cuts,alpha) #generate true data from the pch model
censoring=runif(n,min=70,max=90)
time=pmin(time,censoring) #observed times
delta=time<censoring #gives 62% of observed data on average
#The adaptive ridge estimator
fit=arpchsurv(time,delta,verbose=TRUE,cuts=1:100,CI=TRUE)
fit$final.cuts
exp(fit$final.a)
plot(fit)
plot(fit,pos=fit$pos,CI=TRUE)
points(c(0,c(20,40,50,70),max(time)),c(0,alpha),type="S",lwd=2,xlim=c(10,80),lty=2,col="red") #the true hazard function
fitsurv=pchsurv(time,delta,cuts=fit$final.cuts)
plot(fitsurv,CI=TRUE)
seqtime=seq(0,100,by=0.1)
lines(seqtime,exp(-pchcumhaz(seqtime,cuts,alpha)),type="l",col="red") #the true survival function
#The ridge estimator
fitR=arpchsurv(time,delta,verbose=TRUE,cuts=1:100,AR=FALSE)
plot(fitR)
plot(fitR,pos=50,main="")
lines(fitR,pos=80,col="blue")
points(c(0,c(20,40,50,70),max(time)),c(0,alpha),type="S",lwd=2,xlim=c(10,80),lty=2,col="red") #the true hazard function
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.