context("Chapter 4")
test_that("Chapter 4 functions basically work", {
expect_output(
object = print(Adjusted_inv_sinh_CI_OR_2x2(lampasona_2013)),
regexp = "estimate = 5.6250 \\(95% CI 1.1414 to 21.7873\\)"
)
expect_output(
object = print(Adjusted_inv_sinh_CI_ratio_2x2(ritland_2007)),
regexp = "estimate = 0.0000 \\(95% CI 0.0000 to 1.1524\\)"
)
expect_output(
object = print(Adjusted_inv_sinh_CI_ratio_2x2(matrix(c(1, 0, 3, 4), 2))),
regexp = "inverse sinh CI: estimate = Inf \\(95% CI 0.2603 to Inf\\)"
)
expect_output(
object = print(Adjusted_log_CI_2x2(perondi_2004)),
regexp = "estimate = 7.0000 \\(95% CI 0.9241 to 27.0523\\)"
)
expect_output(
object = print(Wald_CI_2x2(perondi_2004)),
regexp = "estimate = 0.1765 \\(95% CI 0.0292 to 0.3238\\)"
)
expect_output(
object = print(AgrestiCaffo_CI_2x2(perondi_2004)),
regexp = "estimate = 0.1765 \\(95% CI 0.0116 to 0.3217\\)"
)
expect_output(
object = print(BaptistaPike_exact_conditional_CI_2x2(rbind(c(1, 7), c(5, 7)))),
regexp = "estimate = 0.2000 \\(95% CI 0.0151 to 1.7523\\)"
)
expect_output(
object = print(BaptistaPike_exact_conditional_CI_2x2(matrix(c(1, 0, 0, 1), 2))),
regexp = "Baptista-Pike .+ = Inf \\(95% CI 0.1111 to Inf\\)"
)
expect_output(
object = print(BaptistaPike_midP_CI_2x2(rbind(c(15, 30), c(2, 3)))),
regexp = "estimate = 0.7500 \\(95% CI 0.1415 to 4.6034\\)"
)
expect_output(
object = print(BaptistaPike_midP_CI_2x2(matrix(c(1, 0, 1, 1), 2))),
regexp = "estimate = Inf \\(95% CI 0.0556 to Inf\\)"
)
expect_output(
object = print(Cornfield_exact_conditional_CI_2x2(lampasona_2013)),
regexp = "estimate = 5.6250 \\(95% CI 1.0226 to 31.5025\\)"
)
expect_output(
object = print(Cornfield_exact_conditional_CI_2x2(matrix(c(1, 0, 0, 1), 2))),
regexp = "conditional CI: estimate = Inf \\(95% CI 0.0526 to Inf\\)"
)
expect_output(
object = print(Cornfield_midP_CI_2x2(tea)),
regexp = "estimate = 9.0000 \\(95% CI 0.3101 to 308.5568\\)"
)
expect_output(
object = print(Cornfield_midP_CI_2x2(matrix(c(3, 1, 0, 3), 2))),
regexp = "Cornfield .+Inf \\(95% CI 0.5605 to Inf\\)"
)
expect_output(
object = print(Fisher_exact_test_2x2(ritland_2007)),
regexp = "P = 0.06287"
)
expect_output(
object = print(Fisher_exact_test_2x2(tea * 0)),
regexp = "The Fisher exact test \\(Pearson\\): P = 1.00000"
)
expect_output(
object = print(Exact_unconditional_test_2x2(tea)),
regexp = "The Suissa-Shuster exact unconditional test: P = 0.28916"
)
expect_output(
object = print(Exact_unconditional_test_2x2(tea, gamma= 0)),
regexp = "The Suissa-Shuster exact unconditional test: P = 0.28906"
)
expect_output(
object = print(Exact_unconditional_test_2x2(matrix(c(0, 1, 0, 0), 2))),
regexp = "The Suissa-Shuster exact unconditional test: P = 1.0000"
)
expect_output(
object = print(Fisher_midP_test_2x2(ritland_2007)),
regexp = "The Fisher mid-P test \\(Fisher-Irwin\\): P = 0.04466"
)
expect_output(
object = print(Fisher_midP_test_2x2(ritland_2007, "Pearson")),
regexp = "The Fisher mid-P test \\(Pearson\\): P = 0.04466"
)
expect_output(
object = print(Fisher_midP_test_2x2(ritland_2007, "LR")),
regexp = "The Fisher mid-P test \\(LR\\): P = 0.04466"
)
expect_output(
object = print(Gart_adjusted_logit_CI_2x2(ritland_2007)),
regexp = "estimate = 0.0000 \\(95% CI 0.0064 to 1.9804\\)"
)
expect_output(
object = print(Independence_smoothed_logit_CI_2x2(lampasona_2013)),
regexp = "estimate = 5.6250 \\(95% CI 1.0206 to 23.7777\\)"
)
expect_output(
object = print(Inv_sinh_CI_OR_2x2(lampasona_2013)),
regexp = "estimate = 5.6250 \\(95% CI 1.2472 to 25.3686\\)"
)
expect_output(
object = print(Inv_sinh_CI_OR_2x2(matrix(c(0, 0, 0, 0), 2))),
regexp = "estimate = NaN \\(95% CI 0.0000 to Inf\\)"
)
expect_output(
object = print(Inv_sinh_CI_ratio_2x2(matrix(c(10, 0, 10, 20), 2))),
regexp = "The inverse sinh CI.+Inf \\(95% CI 2.6032 to Inf\\)"
)
expect_output(
object = print(Inv_sinh_CI_ratio_2x2(perondi_2004)),
regexp = "estimate = 7.0000 \\(95% CI 1.1671 to 41.9827\\)"
)
expect_output(
object = print(Katz_log_CI_2x2(perondi_2004)),
regexp = "estimate = 7.0000 \\(95% CI 0.9096 to 53.8695\\)"
)
expect_output(
object = print(Koopman_asymptotic_score_CI_2x2(perondi_2004)),
regexp = "estimate = 7.0000 \\(95% CI 1.2209 to 42.5757\\)"
)
expect_output(
object = print(Koopman_asymptotic_score_CI_2x2(matrix(c(0, 0, 1, 2), 2))),
regexp = "estimate = NaN \\(95% CI 0.0000 to Inf\\)"
)
expect_output(
object = print(Koopman_asymptotic_score_CI_2x2(matrix(c(3, 0, 1, 2), 2))),
regexp = "estimate = Inf \\(95% CI 0.8257 to Inf\\)"
)
expect_output(
object = print(LR_test_2x2(tea)),
regexp = "P = 0.14798, T = 2.093 \\(df = 1\\)"
)
expect_output(
object = print(Mee_asymptotic_score_CI_2x2(perondi_2004)),
regexp = "estimate = 0.1765 \\(95% CI 0.0284 to 0.3439\\)"
)
expect_output(
object = print(Mee_asymptotic_score_CI_2x2(matrix(c(2e6, 2, 2, 2e6), 2))),
regexp = "Mee asymptotic .+ 1.0000 \\(95% CI 1.0000 to 1.0000\\)"
)
expect_output(
object = print(Mee_asymptotic_score_CI_2x2(matrix(c(2, 2e6, 2e6, 2), 2))),
regexp = "Mee asymptotic .+ -1.0000 \\(95% CI -1.0000 to -1.0000\\)"
)
expect_output(
object = print(MiettinenNurminen_asymptotic_score_CI_difference_2x2(ritland_2007)),
regexp = "estimate = -0.2083 \\(95% CI -0.3164 to -0.0056\\)"
)
expect_output(
object = print(MiettinenNurminen_asymptotic_score_CI_difference_2x2(matrix(c(2e6, 2, 2, 2e6), 2))),
regexp = "Miettinen-Nurminen .+ 1.0000 \\(95% CI 1.0000 to 1.0000\\)"
)
expect_output(
object = print(MiettinenNurminen_asymptotic_score_CI_difference_2x2(matrix(c(2, 2e6, 2e6, 2), 2))),
regexp = "Miettinen-Nurminen .+ -1.0000 \\(95% CI -1.0000 to -1.0000\\)"
)
expect_output(
object = print(MiettinenNurminen_asymptotic_score_CI_OR_2x2(lampasona_2013)),
regexp = "5.6250 \\(95% CI 1.0934 to 28.9419\\)"
)
expect_output(
object = print(MiettinenNurminen_asymptotic_score_CI_OR_2x2(matrix(c(1, 0, 10, 2), 2))),
regexp = "score CI: estimate = Inf \\(95% CI 0.0313 to Inf\\)"
)
expect_output(
object = print(MiettinenNurminen_asymptotic_score_CI_ratio_2x2(perondi_2004)),
regexp = "estimate = 7.0000 \\(95% CI 1.2086 to 43.0330\\)"
)
expect_output(
object = print(MiettinenNurminen_asymptotic_score_CI_ratio_2x2(matrix(c(0, 0, 1, 2), 2))),
regexp = "estimate = NaN \\(95% CI 0.0000 to Inf\\)"
)
expect_output(
object = print(MiettinenNurminen_asymptotic_score_CI_ratio_2x2(matrix(c(3, 0, 1, 2), 2))),
regexp = "estimate = Inf \\(95% CI 0.7113 to Inf\\)"
)
expect_output(
object = print(MOVER_R_Wilson_CI_OR_2x2(lampasona_2013)),
regexp = "estimate = 5.6250 \\(95% CI 1.0433 to 20.5670\\)"
)
expect_output(
object = print(MOVER_R_Wilson_CI_OR_2x2(matrix(c(10, 20, 0, 30), 2))),
regexp = "MOVER-R Wilson CI: estimate = Inf \\(95% CI 3.9010 to Inf\\)"
)
expect_output(
object = print(MOVER_R_Wilson_CI_OR_2x2(matrix(c(1, NA, 3, 4), 2))),
regexp = "MOVER-R Wilson CI: estimate =\\s+NA \\(95% CI 0.0000 to Inf\\)"
)
expect_output(
object = print(MOVER_R_Wilson_CI_ratio_2x2(matrix(c(NA, 1, 2, 3), 2))),
regexp = "MOVER-R Wilson CI: estimate =\\s+NA \\(95% CI 0.0000 to Inf\\)"
)
expect_output(
object = print(MOVER_R_Wilson_CI_ratio_2x2(perondi_2004)),
regexp = "estimate = 7.0000 \\(95% CI 1.1537 to 41.9763\\)"
)
expect_output(
object = print(Newcombe_hybrid_score_CI_2x2(perondi_2004)),
regexp = "estimate = 0.1765 \\(95% CI 0.0189 to 0.3404\\)"
)
expect_output(
object = print(Pearson_chi_squared_test_2x2(tea)),
regexp = "Pearson chi-squared test: P = 0.15730, T = 2.000 \\(df = 1\\)"
)
expect_output(
object = print(Pearson_chi_squared_test_2x2(tea * 0)),
regexp = "The Pearson chi-squared test: P = 1.00000, T = NaN \\(df = 1\\)"
)
expect_output(
object = print(Pearson_chi_squared_test_CC_2x2(tea)),
regexp = "chi-squared test: P = 0.47950, T = 0.500 \\(df = 1\\)"
)
expect_output(
object = print(Pearson_chi_squared_test_CC_2x2(tea * 0)),
regexp = "The Pearson chi-squared test: P = 1.00000, T = NaN \\(df = 1\\)"
)
expect_output(
object = print(PriceBonett_approximate_Bayes_CI_2x2(perondi_2004)),
regexp = "estimate = 7.0000 \\(95% CI 0.9205 to 36.5449\\)"
)
expect_output(
object = print(Wald_CI_CC_2x2(perondi_2004)),
regexp = "estimate = 0.1765 \\(95% CI -0.0002 to 0.3532\\)"
)
expect_output(
object = print(the_2x2_table_CIs_difference(ritland_2007)),
regexp = "Miettinen-Nurminen asymptotic score -0.3164 to -0.0056"
)
expect_output(
object = print(Woolf_logit_CI_2x2(ritland_2007)),
regexp = "estimate = 0.0000 \\(95% CI 0.0000 to Inf\\)"
)
expect_output(
object = print(Uncorrected_asymptotic_score_CI_2x2(ritland_2007)),
regexp = "0.0000 \\(95% CI 0.0000 to 0.9532\\)"
)
expect_output(
object = print(Uncorrected_asymptotic_score_CI_2x2(matrix(c(10, 0, 0, 30), 2))),
regexp = "score CI: estimate = Inf \\(95% CI 81.6504 to Inf\\)"
)
expect_output(
object = print(the_2x2_table_CIs_OR(ritland_2007)),
regexp = "inverse sinh \\(0.45, 0.25\\) 0.006 to 1.817 5.766"
)
expect_output(
object = print(the_2x2_table_CIs_ratio(ritland_2007)),
regexp = "Price-Bonett approximate Bayes\\s+0.001 to 3.425 7.836"
)
expect_output(
object = print(Z_unpooled_test_2x2(ritland_2007)),
regexp = "The Z-unpooled test: P = 0.00001, Z = -4.353"
)
expect_output(
object = print(Z_unpooled_test_2x2(ritland_2007 * 0)),
regexp = "The Z-unpooled test: P = 1.00000, Z = NaN"
)
expect_output(
object = print(the_2x2_table_tests(ritland_2007)),
regexp = "chi-squared w / CC\\s+0.1016\\s+\\(T = 2.680, df = 1\\)"
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.