compMlvarsel: Computes the log marginal likelihood of clustering and...

Description Usage Arguments Value

Description

Computes the log marginal likelihood of clustering and variable selection

Usage

1
2
compMlvarsel(K, D, n, nu_0, S_0, lambda_0, nu, lambda, S, lognullMarg,
  intfeature)

Arguments

K

The number of currently occupied clusters

D

The number of variable in the data matrix.

n

The vector indicating the number of observations in each cluster

nu_0

The degrees of freedom hyperparameter, the default value is D, where D is the number of variables.

S_0

The scale hyperparamter, the deault value is a fifth of the column variance of the data matrix.

lambda_0

The variance of the Guassian mean prior, the dafault value is 0.01.

nu

The current posterior degrees of freedom

lambda

The current posterior mean variance

S

The current posterior scale vector

lognullMarg

The log marginal probability of a variable belonging to the null model

intfeature

A binary vector of feature which are parition as irrelevant (0) or relevant (1).

Value

The log marginal likelhood


ococrook/sugsvarsel documentation built on May 27, 2019, 12:12 p.m.