R/csv_col_exercise.R

Defines functions get_csv_cols_exercise

Documented in get_csv_cols_exercise

#' @rdname get_csv_cols
get_csv_cols_exercise <- function(chapter, exercise) {
  get_csv_cols_chapter_1_exercise <- function(exercise) {
    switch(exercise,
      stop(paste('chapter 1, exercise', exercise, 'is invalid')),
      readr::cols( # 2
        drug = readr::col_factor(),
        age = readr::col_integer(),
        gender = readr::col_factor(),
        EWL = readr::col_double()
      ),
      readr::cols( # 3
        bodystyle = readr::col_character(),
        country = readr::col_factor(),
        hwy = readr::col_factor(),
        doors = readr::col_integer(),
        leather = readr::col_factor(),
        price = readr::col_integer()
      ),
      readr::cols( # 4
        Age = readr::col_integer(),
        Gender = readr::col_factor(),
        QuietTime = readr::col_integer(),
        NChildren = readr::col_integer(),
        StressLevel = readr::col_integer(),
        JobStatus = readr::col_factor(),
        NActivities = readr::col_integer(),
        PastVac = readr::col_integer(),
        Sleephours = readr::col_double()
      ),
      readr::cols( # 5
        age = readr::col_integer(),
        gender = readr::col_factor(),
        run = readr::col_double(),
        t1 = readr::col_double(),
        bike = readr::col_double(),
        t2 = readr::col_double(),
        swim = readr::col_double()
      ),
      readr::cols( # 6
        age = readr::col_integer(),
        gender = readr::col_factor(),
        ethnicity = readr::col_factor(),
        BMI = readr::col_double(),
        nmeds = readr::col_integer(),
        AQI = readr::col_factor(),
        HR = readr::col_integer()
      )
    )
  }

  get_csv_cols_chapter_2_exercise <- function(exercise) {
    switch(exercise,
      readr::cols( # 1
        gender = readr::col_factor(),
        age = readr::col_integer(),
        group = readr::col_factor(),
        preBMI = readr::col_double(),
        postBMI = readr::col_double()
      ),
      readr::cols( # 2
        designation = readr::col_factor(),
        work_years = readr::col_integer(),
        priorQI = readr::col_factor(),
        score = readr::col_integer()
      ),
      readr::cols( # 3
        gender = readr::col_factor(),
        prior_exp = readr::col_factor(),
        self_eval = readr::col_integer(),
        distance = readr::col_double()
      ),
      readr::cols( # 4
        npolicies = readr::col_integer(),
        years_with_firm = readr::col_integer(),
        open_claims = readr::col_integer(),
        claim_amount = readr::col_double()
      )
    )
  }

  get_csv_cols_chapter_3_exercise <- function(exercise) {
    switch(exercise,
      stop(paste('chapter 3, exercise', exercise, 'is invalid')),
      readr::cols( # 2
        gender = readr::col_factor(),
        age = readr::col_integer(),
        meds = readr::col_factor(),
        response = readr::col_factor()
      ),
      readr::cols( # 3
        success = readr::col_factor(),
        cover = readr::col_factor(),
        methods = readr::col_factor(),
        novels = readr::col_factor(),
        years = readr::col_integer()
      ),
      readr::cols( # 4
        LTV = readr::col_integer(),
        Age = readr::col_integer(),
        Income = readr::col_factor(),
        Default = readr::col_factor()
      ),
      readr::cols( # 5
        group = readr::col_factor(),
        A = readr::col_integer(),
        W = readr::col_integer()
      )
    )
  }

  get_csv_cols_chapter_4_exercise <- function(exercise) {
    switch(exercise,
      readr::cols( # 1
        GPA = readr::col_double(),
        GMAT = readr::col_integer(),
        status = readr::col_factor()
      ),
      readr::cols( # 2
        subscribed = readr::col_integer(),
        magazine = readr::col_factor(),
        resolved = readr::col_factor(),
        satisf = readr::col_integer()
      ),
      readr::cols( # 3
        inbusiness = readr::col_factor(),
        firsttime = readr::col_factor(),
        type = readr::col_factor(),
        amount = readr::col_integer()
      ),
      readr::cols( # 4
        elevation = readr::col_integer(),
        water = readr::col_factor(),
        wind_dir = readr::col_integer(),
        wind_speed = readr::col_integer(),
        outcome = readr::col_factor()
      ),
      readr::cols( # 5
        age = readr::col_integer(),
        gender = readr::col_factor(),
        condition = readr::col_factor()
      ),
      readr::cols( # 6
        status = readr::col_factor(),
        agediff = readr::col_integer(),
        heightdiff = readr::col_integer(),
        drinking = readr::col_factor()
      )
    )
  }

  get_csv_cols_chapter_5_exercise <- function(exercise) {
    switch(exercise,
      readr::cols( # 1
        defectives = readr::col_integer(),
        experience = readr::col_double(),
        shift = readr::col_factor()
      ),
      readr::cols( # 2
        accidents = readr::col_integer(),
        gender = readr::col_factor(),
        age = readr::col_integer(),
        miles = readr::col_integer()
      ),
      readr::cols( # 3
        calls = readr::col_integer(),
        time = readr::col_factor(),
        wind = readr::col_integer(),
        water = readr::col_factor()
      ),
      stop(paste('chapter 5, exercise', exercise, 'is invalid')),
      stop(paste('chapter 5, exercise', exercise, 'is invalid')),
      stop(paste('chapter 5, exercise', exercise, 'is invalid')),
      stop(paste('chapter 5, exercise', exercise, 'is invalid')),
      readr::cols( # 8
        nruns = readr::col_integer(),
        gender = readr::col_factor(),
        age = readr::col_integer(),
        run = readr::col_factor(),
        pace = readr::col_double()
      ),
      readr::cols( # 9
        grade = readr::col_factor(),
        hw = readr::col_factor(),
        gender = readr::col_factor(),
        books = readr::col_integer()
      ),
      readr::cols( # 10
        BMI = readr::col_double(),
        age = readr::col_integer(),
        gender = readr::col_factor(),
        smoking = readr::col_factor(),
        attacks = readr::col_integer()
      ),
      stop(paste('chapter 5, exercise', exercise, 'is invalid')),
      readr::cols( # 12
        comps = readr::col_integer(),
        books = readr::col_double(),
        jrnls = readr::col_integer(),
        budget = readr::col_double()
      ),
      readr::cols( # 13
        daysnomeds = readr::col_integer(),
        gender = readr::col_factor(),
        age = readr::col_integer(),
        othermeds = readr::col_integer()
      )
    )
  }

  get_csv_cols_chapter_6_exercise <- function(exercise) {
    switch(exercise,
      stop(paste('chapter 6, exercise', exercise, 'is invalid')),
      readr::cols( # 2
        max_temp = readr::col_integer(),
        min_temp = readr::col_integer(),
        feeding_level = readr::col_factor(),
        ndead_mussels = readr::col_integer()
      ),
      readr::cols( # 3
        age = readr::col_integer(),
        gender = readr::col_factor(),
        job = readr::col_factor(),
        allowance = readr::col_integer()
      ),
      readr::cols( # 4
        nkayaks = readr::col_integer(),
        party_size = readr::col_integer(),
        route_length = readr::col_integer(),
        camped = readr::col_factor()
      ),
      readr::cols( # 5
        nnewvideos = readr::col_integer(),
        nvideos = readr::col_integer(),
        nsubscr = readr::col_double(),
        nviews = readr::col_double(),
        type = readr::col_factor()
      ),
      readr::cols( # 6
        nclaimspast5ys = readr::col_integer(),
        nclaimsprev5ys = readr::col_integer(),
        age = readr::col_integer(),
        gender = readr::col_factor()
      ),
      readr::cols( # 7
        DMFTindex = readr::col_integer(),
        age = readr::col_integer(),
        gender = readr::col_factor(),
        oral_hygiene = readr::col_factor()
      ),
      stop(paste('chapter 6, exercise', exercise, 'is invalid')),
      readr::cols( # 9
        ngameinjuries = readr::col_integer(),
        gender = readr::col_factor(),
        nsports = readr::col_integer(),
        npracticeinjuries = readr::col_integer()
      )
    )
  }

  get_csv_cols_chapter_7_exercise <- function(exercise) {
    switch(exercise,
      stop(paste('chapter 7, exercise', exercise, 'is invalid')),
      readr::cols( # 2
        mass = readr::col_integer(),
        wingspan = readr::col_integer(),
        distance = readr::col_integer(),
        nringed = readr::col_integer(),
        nmigrated = readr::col_integer()
      ),
      readr::cols( # 3
        perc_hospzd = readr::col_integer(),
        hosp_loc = readr::col_factor(),
        hosp_type = readr::col_factor(),
        nbeds = readr::col_integer()
      ),
      readr::cols( # 4
        distance = readr::col_integer(),
        method = readr::col_factor(),
        depth = readr::col_integer(),
        percbycatch = readr::col_integer()
      ),
      readr::cols( # 5
        perc_sold = readr::col_double(),
        avg_price = readr::col_double(),
        nhouses = readr::col_integer(),
        age = readr::col_integer()
      ),
      readr::cols( # 6
        trophies = readr::col_integer(),
        firstplaces = readr::col_integer(),
        years = readr::col_integer(),
        blackbelts = readr::col_integer(),
        pupils = readr::col_integer()
      ),
      readr::cols( # 7
        nplanted = readr::col_integer(),
        nsurvived = readr::col_integer(),
        pestcontrol = readr::col_integer(),
        fertilization = readr::col_integer(),
        precipitation = readr::col_integer(),
        windspeed = readr::col_double()
      ),
      readr::cols( # 8
        gender = readr::col_factor(),
        expyr = readr::col_integer(),
        bonus = readr::col_double(),
        propsales = readr::col_double()
      ),
      readr::cols( # 9
        EC = readr::col_double(),
        soiltemp = readr::col_integer(),
        altitude = readr::col_integer(),
        germrate = readr::col_double()
      ),
      readr::cols( # 10
        BMI = readr::col_double(),
        fortyyd = readr::col_double(),
        vertical = readr::col_double(),
        broad = readr::col_integer(),
        bench = readr::col_integer(),
        propgames = readr::col_double()
      )
    )
  }

  get_csv_cols_chapter_8_exercise <- function(exercise) {
    switch(exercise,
      stop(paste('chapter 8, exercise', exercise, 'is invalid')),
      readr::cols( # 2
        id = readr::col_factor(),
        totalyears = readr::col_integer(),
        status = readr::col_factor(),
        bonus15 = readr::col_integer(),
        bonus16 = readr::col_integer(),
        bonus17 = readr::col_integer()
      ),
      readr::cols( # 3
        id = readr::col_factor(),
        gender = readr::col_factor(),
        age = readr::col_integer(),
        doctor = readr::col_factor(),
        length1 = readr::col_integer(),
        length2 = readr::col_integer(),
        length3 = readr::col_integer(),
        score1 = readr::col_double(),
        score2 = readr::col_double(),
        score3 = readr::col_double()
      ),
      readr::cols( # 4
        id = readr::col_factor(),
        gender = readr::col_factor(),
        age = readr::col_integer(),
        oxygen1 = readr::col_double(),
        runtime1 = readr::col_double(),
        pulse1 = readr::col_integer(),
        oxygen2 = readr::col_double(),
        runtime2 = readr::col_double(),
        pulse2 = readr::col_integer(),
        oxygen3 = readr::col_double(),
        runtime3 = readr::col_double(),
        pulse3 = readr::col_integer()
      ),
      readr::cols( # 5
        id = readr::col_factor(),
        group = readr::col_factor(),
        gender = readr::col_factor(),
        aexercise = readr::col_integer(),
        aBMI = readr::col_double(),
        bexercise = readr::col_integer(),
        bBMI = readr::col_double(),
        cexercise = readr::col_integer(),
        cBMI = readr::col_double()
      )
    )
  }


  get_csv_cols_chapter_9_exercise <- function(exercise) {
    switch(exercise,
      readr::cols( # 1
        patid = readr::col_factor(),
        group = readr::col_factor(),
        gender = readr::col_factor(),
        EWL1 = readr::col_double(),
        EWL2 = readr::col_double(),
        EWL3 = readr::col_double(),
        EWL4 = readr::col_double()
      ),
      readr::cols( # 2
        id = readr::col_factor(),
        group = readr::col_factor(),
        gender = readr::col_factor(),
        afruits = readr::col_integer(),
        aexercise = readr::col_integer(),
        bfruits = readr::col_integer(),
        bexercise = readr::col_integer(),
        cfruits = readr::col_integer(),
        cexercise = readr::col_integer(),
        dfruits = readr::col_integer(),
        dexercise = readr::col_integer()
      ),
      readr::cols( # 3
        patid = readr::col_factor(),
        dosage = readr::col_factor(),
        gender = readr::col_factor(),
        week1 = readr::col_logical(),
        week3 = readr::col_logical(),
        week7 = readr::col_logical(),
        week16 = readr::col_logical()
      ),
      stop(paste('chapter 9, exercise', exercise, 'is invalid')),
      readr::cols( # 5
        Hotel = readr::col_factor(),
        Region = readr::col_factor(),
        ADR1 = readr::col_integer(),
        OCR1 = readr::col_integer(),
        ADR2 = readr::col_integer(),
        OCR2 = readr::col_integer(),
        ADR3 = readr::col_integer(),
        OCR3 = readr::col_integer(),
        ADR4 = readr::col_integer(),
        OCR4 = readr::col_integer()
      ),
      readr::cols( # 6
        id = readr::col_factor(),
        gender = readr::col_factor(),
        age = readr::col_factor(),
        edu = readr::col_factor(),
        pdc1 = readr::col_double(),
        pdc2 = readr::col_double(),
        pdc3 = readr::col_double(),
        pdc4 = readr::col_double()
      )
    )
  }


  get_csv_cols_chapter_10_exercise <- function(exercise) {
    switch(exercise,
      stop(paste('chapter 10, exercise', exercise, 'is invalid')),
      readr::cols( # 2
        school = readr::col_factor(),
        API = readr::col_integer(),
        subject = readr::col_factor(),
        classsize = readr::col_integer(),
        year = readr::col_integer(),
        score = readr::col_double()
      ),
      readr::cols( # 3
        state = readr::col_factor(),
        county = readr::col_factor(),
        township = readr::col_factor(),
        popl = readr::col_double(),
        pest = readr::col_factor(),
        pm2_5 = readr::col_double()
      ),
      readr::cols( # 4
        portfolio = readr::col_factor(),
        asset = readr::col_factor(),
        type = readr::col_factor(),
        day1 = readr::col_logical(),
        day2 = readr::col_logical(),
        day3 = readr::col_logical(),
        day4 = readr::col_logical(),
        day5 = readr::col_logical()
      ),
      readr::cols( # 5
        school = readr::col_factor(),
        class = readr::col_factor(),
        student = readr::col_factor(),
        gender = readr::col_factor(),
        task1 = readr::col_integer(),
        task2 = readr::col_integer(),
        task3 = readr::col_integer(),
        task4 = readr::col_integer()
      ),
      readr::cols( # 6
        univ = readr::col_factor(),
        dept = readr::col_factor(),
        year1 = readr::col_integer(),
        year2 = readr::col_integer(),
        year3 = readr::col_integer()
      ),
      readr::cols( # 7
        center = readr::col_factor(),
        subject = readr::col_factor(),
        gender = readr::col_factor(),
        medA = readr::col_double(),
        medB = readr::col_double(),
        medC = readr::col_double(),
        medD = readr::col_double()
      )
    )
  }
  switch(chapter,
    get_csv_cols_chapter_1_exercise(exercise),
    get_csv_cols_chapter_2_exercise(exercise),
    get_csv_cols_chapter_3_exercise(exercise),
    get_csv_cols_chapter_4_exercise(exercise),
    get_csv_cols_chapter_5_exercise(exercise),
    get_csv_cols_chapter_6_exercise(exercise),
    get_csv_cols_chapter_7_exercise(exercise),
    get_csv_cols_chapter_8_exercise(exercise),
    get_csv_cols_chapter_9_exercise(exercise),
    get_csv_cols_chapter_10_exercise(exercise),
  )
}
ocrug/AdvancedRegression documentation built on Nov. 4, 2019, 10:13 p.m.