psoriasis.data<- read.csv(file="./LongitudinalPoissonExerciseData.csv",
header=TRUE, sep=",")
#creating long-form data set
library(reshape2)
longform.data<- melt(psoriasis.data, id.vars=c("patid", "group"),
variable.name = "visits", value.name="npatches")
#creating numeric variable for time
weeks<- ifelse(longform.data$visits=="day1", 0.14, ifelse(longform.data$visits
=="week1", 1, ifelse(longform.data$visits=="week2", 2,ifelse(longform.data$visits=="week5",
5, 13))))
#fitting random slope and intercept Poisson model
library(lme4)
summary(fitted.model<- glmer(npatches ~ group + weeks
+ (1 + weeks|patid), data=longform.data,
family=poisson(link="log")))
#using fitted model for prediction
print(predict(fitted.model, data.frame(patid=11, group="Tx",
weeks=5), re.form=NA, type="response"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.