install.packages("DatabaseConnector")
install.packages("collapsibleTree")
install.packages("data.table")
install.packages("dplyr")
install.packages("ggplot2")
install.packages("ggthemes")
install.packages("reshape2")
install.packages("scales")
install.packages("highcharter")
install.packages("gridExtra")
install.packages("viridis")
install.packages("tidyverse")
install.packages("hrbrthemes")
install.packages("plotly")
install.packages("SqlRender")
install.packages("listviewer")
install.packages("tidyr")
install.packages("networkD3")
install.packages("ggbeeswarm")
install.packages("flexdashboard")
library(flexdashboard)
# Details for connecting to the server:
connectionDetails <- DatabaseConnector::createConnectionDetails(dbms='pdw',
server=Sys.getenv("PDW_SERVER"),
schema='cdmDatabaseSchema',
user=NULL,
password=NULL,
port='port')
oracleTempSchema <- NULL
cdmDatabaseSchema <- "cdm_database_schema.dbo"
cohortDatabaseSchema <- "cohort_database_schema.dbo"
vocaDatabaseSchema <- "voca_database_schema.dbo"
oncologyDatabaseSchema <- "oncology_database_schema.dbo" # Schema for Episode table and Episode_eventtable, default = cdmDatabaseSchema
createCohortTable <- FALSE # Create cohort table for your cohort table
createEpisodeAndEventTable <- TRUE # warning: existing table might be erased
episodeTable <- "episode_table"
episodeEventTable <- "episode_event_table"
cohortTable <- "cohort"
maxCores <- 4
executeExtraction(connectionDetails,
oracleTempSchema = NULL,
cdmDatabaseSchema,
cohortDatabaseSchema,
vocaDatabaseSchema = cdmDatabaseSchema,
oncologyDatabaseSchema = cdmDatabaseSchema,
createCohortTable = FALSE,
createEpisodeAndEventTable = FALSE,
createTargetCohort = FALSE,
episodeTable,
episodeEventTable,
cohortTable,
maxCores = 4)
outputFolder <- 'output folder path'
outputFileTitle <- 'output file title'
targetCohortIds <- c(4:11)
episodeCohortCreate <- TRUE
minSubject <- 0 # under 0 patients are removed from plot
# Usage Pattern graph
fromYear <- 1998
toYear <- 2018
# Iteration Heatmap
identicalSeriesCriteria <- 60 # Regard as a same treatment when gap dates between each cycle less than 60 days
maximumCycleNumber <- 18 # Ignore patients who received regimen more than 18 iteration
# Treatment Pathway
collapseDates <- 0
conditionCohortIds <- 1 # restrict target patients with certain condition_occurrence
treatmentLine <- 3 # Treatment line number for visualize in graph
minimumRegimenChange <- 1 # Target patients for at least 1 regimen change
# Cohort for surgery and event
surgeryCohortIds <- 42 # Colectomy
eventCohortIds <- 45 # Neutropenia
# ignore the event in range of +- treatmentEffectDates
treatmentEffectDates <- 2
plots <- CancerTxPatterns(connectionDetails,
oracleTempSchema,
cdmDatabaseSchema,
cohortDatabaseSchema,
oncologyDatabaseSchema,
vocaDatabaseSchema,
cohortTable,
episodeTable,
outputFolder,
outputFileTitle,
targetCohortIds,
episodeCohortCreate = FALSE,
createEpisodeCohortTable,
fromYear = 1998,
toYear = 2018,
identicalSeriesCriteria = 60,
maximumCycleNumber = 18,
minSubject = 0,
collapseDates = 0,
conditionCohortIds,
treatmentLine = 3,
minimumRegimenChange = 1,
surgeryCohortIds,
eventCohortIds,
treatmentEffectDates = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.