```r library(PatientLevelPrediction) knitr::opts_chunk$set( cache=FALSE, comment = "#>", error = FALSE, tidy = FALSE)
# Introduction This vignette describes how one can populate the SkeletonExistingModelStudy pacakge with the target cohort, outcome cohorts and model settings. First make sure to open the Skeleton R project in R studio, this can be done by finding the SkeletonExistingModelStudy.Rproj file in the folder. Once the package project is opened in R studio there are 3 steps that must be followed: 1. Run the function: populatePackage (found in extras/populatePackage.R on line 51) to add all cohorts and settings into the study package 2. Build the study package 3. Run the study package execute function ## Step 1: Populate skeleton settings All the settings can be added to the study package by using the function 'populatePackage()' that is found in extras/populatePackage.R. To add the function to your environment, make sure the package R project is open in R studio and run: ```r source('./extras/populatePackage.R')
This will make the function 'populatePackage()'available to use within your R session.
The 'populatePackage()' function requires users to specify:
For example, to create two custom cohort covariates into the package I can run:
populatePackage(targetCohortId = 10845, targetCohortName = 'neg mamo', outcomeId = 10082, outcomeName = 'breast cancer', standardCovariates = data.frame(covariateId = c(0003, 1003, 2003, 3003, 4003, 5003, 6003, 7003, 8003, 9003, 10003, 11003, 12003, 13003, 14003, 15003, 16003, 17003, 8507001), covariateName = c('Age 0-4', 'Age 5-9', 'Age 10-14', 'Age 15-19', 'Age 20-24', 'Age 25-30', 'Age 30-34', 'Age 35-40', 'Age 40-44', 'Age 45-50', 'Age 50-54', 'Age 55-60', 'Age 60-64', 'Age 65-70', 'Age 70-74', 'Age 75-80', 'Age 80-84', 'Age 85-90', 'Male'), points = c(rep(0,19))), baseUrl = 'https://yourWebAPI', atlasCovariateIds = c(14709,14709, 14710), atlasCovariateNames = c('smoking anytime', 'smoking recent', 'traumatic brain injury'), startDays = c(-999,-30,-999), endDays = c(0,0,0), points = c(1,2,1))
The code above extracts the target and outcome cohorts and two ATLAS cohort (14709, 14710) to create three covariates:
It also creates three csv files in the inst/settings directory named:
Aftering adding the settings into the package, you now need to build the package. Use the standard process (in R studio press the 'Build' tab in the top right corner and then select the 'Install and Restart' button) to build the study package so an R library is created.
library(SkeletonExistingPredictionModelStudy) options(fftempdir = "location with space to save big data") # The folder where the study intermediate and result files will be written: outputFolder <- "./SkeletonExistingPredictionModelStudyResults" # Details for connecting to the server: dbms <- "you dbms" user <- 'your username' pw <- 'your password' server <- 'your server' port <- 'your port' connectionDetails <- DatabaseConnector::createConnectionDetails(dbms = dbms, server = server, user = user, password = pw, port = port) # Add the database containing the OMOP CDM data cdmDatabaseSchema <- 'cdm database schema' # Add a database with read/write access as this is where the cohorts will be generated cohortDatabaseSchema <- 'work database schema' oracleTempSchema <- NULL # table name where the cohorts will be generated cohortTable <- 'SkeletonExistingPredictionModelStudyCohort' # TAR settings sampleSize <- NULL riskWindowStart <- 1 startAnchor <- 'cohort start' riskWindowEnd <- 365 endAnchor <- 'cohort start' firstExposureOnly <- F removeSubjectsWithPriorOutcome <- F priorOutcomeLookback <- 99999 requireTimeAtRisk <- F minTimeAtRisk <- 1 includeAllOutcomes <- T #======================= standardCovariates <- FeatureExtraction::createCovariateSettings(useDemographicsAgeGroup = T, useDemographicsGender = T) SkeletonExistingPredictionModelStudy::execute(connectionDetails = connectionDetails, cdmDatabaseSchema = cdmDatabaseSchema, cdmDatabaseName = cdmDatabaseName, cohortDatabaseSchema = cohortDatabaseSchema, cohortTable = cohortTable, sampleSize = sampleSize, riskWindowStart = riskWindowStart, startAnchor = startAnchor, riskWindowEnd = riskWindowEnd, endAnchor = endAnchor, firstExposureOnly = firstExposureOnly, removeSubjectsWithPriorOutcome = removeSubjectsWithPriorOutcome, priorOutcomeLookback = priorOutcomeLookback, requireTimeAtRisk = requireTimeAtRisk, minTimeAtRisk = minTimeAtRisk, includeAllOutcomes = includeAllOutcomes, standardCovariates = standardCovariates, outputFolder = outputFolder, createCohorts = T, runAnalyses = T, viewShiny = T, packageResults = F, minCellCount= 5, verbosity = "INFO", cdmVersion = 5) )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.