GFLlogit: Coordinate optimization for GFL logistic regression

View source: R/GFLlogit.R

GFLlogitR Documentation

Coordinate optimization for GFL logistic regression

Description

GFLlogit This function calculates estimates for GFL logistic regression via coordinate descent algorithm.

Usage

GFLlogit(
  m,
  y,
  adjCD,
  lambda = NULL,
  lambda.type = NULL,
  weight = NULL,
  conv = "coef",
  progress = FALSE,
  thres = 1e-05
)

Arguments

m

a vector of the numbers of trials

y

a vector of the numbers of successes

adjCD

a list of adjacent information

lambda

tuning parameter; "NULL" or vector/scalar

lambda.type

option when is.null(lambda)=FALSE; value: lambda is searching points; rate: lam.max*lambda is searching points

weight

penalty weights; "NULL" or list

conv

"coef" or "pll"; A convergence judgement is based on "conv"

progress

If TRUE, progress is displayed

thres

a threshold for convergence judgement

Value

mu.hat: vector of estimates

lam.hat: the optimal tuning parameter

pll: the minimum of the objective function

time: runtime (s)

Examples

#GFLlogit(m, y, adjCD)

ohishim/GFLlogit documentation built on Feb. 6, 2023, 9 p.m.