| NHPP | R Documentation |
Class for NHPP-based software reliability model
Class for NHPP-based software reliability model
R6Class object.
nameA character string for the name of model.
paramsA numeric vector for the model parameters.
dfAn integer for the degrees of freedom of the model.
dataData to esimate parameters.
print()Print model parameters.
NHPP$print(digits = max(3, getOption("digits") - 3), ...)digitsAn integer to determine the number of digits for print.
...Others
omega()The number of total faults.
NHPP$omega()
The number of total faults.
mvf()The mean value function.
NHPP$mvf(t)
tTime
The expected number of faults detected before time t.
dmvf()The difference of mean value function on discrete time domain.
NHPP$dmvf(t)
tA vector for time series.
A vector of the expected number of faults in each time interval.
inv_mvf()The inverse of mean value function.
NHPP$inv_mvf(x)
xThe number of faults.
The first passage time at which the mean value function exceeds x.
intensity()The intensity function.
NHPP$intensity(t)
tTime
The intensity (the first derivative of mean value function) at time t.
sample()Generate samples of fault-detection times following the NHPP over [lower,upper). If diff is true, the method provides time interval of samples.
NHPP$sample(diff = TRUE, lower = 0, upper = +Inf)
diffA logical meaning the generated samples are time intervals or not.
lowerA value indicating the minimum of time domain.
upperA value indicating the maximum of time domain.
A vector of samples following NHPP.
reliab()The reliability function.
NHPP$reliab(t, s)
tA value of time from s.
sA value of current time.
The probability that no fault is detected during [s, t+s)
residual()The expected number of residual faults at time t.
NHPP$residual(t)
tA value of time.
The expected residual number of faults at time t.
ffp()The fault-free probability at time t.
NHPP$ffp(t)
tA value of time.
The probability that software does not have any fault at time t.
imtbf()The instantaneous MTBF at time t.
NHPP$imtbf(t)
tA value of time.
The inverse of intensity at time t.
cmtbf()The cumulative MTBF at time t.
NHPP$cmtbf(t)
tA value of time.
the cumulative MTBF.
median()The time at which the software reliability attains the probability p from the orign s.
NHPP$median(s, p = 0.5)
sA value of origin time.
pA value of probability.
the time at which the software reiability become p.
get_params()Make a flatten parameter vector.
NHPP$get_params(params)
paramsA vector of parameters.
init_params()Set initial parameters from a given data. This is used to set the initial value for the fitting algorithm.
NHPP$init_params(data)
dataData.
set_params()Set model parameters.
NHPP$set_params(params)
paramsParameters.
set_omega()Set omega parameter.
NHPP$set_omega(params, x)
paramsParameters.
xA value of omega.
Parameters.
set_data()Set data to be used in the fitting algorithm.
NHPP$set_data(data)
dataData.
em()Execute an EM step.
NHPP$em(params, data)
paramsParameters.
dataData.
A list with the following
Updated parameters.
Absolute difference of parameter vector.
Log-likelihood function for a given parameter vector.
The number of total faults.
llf()The log-likelihood function for a given data.
NHPP$llf(data)
dataData.
Log-likelihood function.
comp_error()Provides the absolute error and relative error from the the two results. The default is the difference of log-likelihood.
NHPP$comp_error(res0, res1)
res0One result
res1Another result
A vector of abusolute error, relative error and the difference.
clone()The objects of this class are cloneable with this method.
NHPP$clone(deep = FALSE)
deepWhether to make a deep clone.
Rsrat::NHPP -> ExpSRM
rate()Get a rate parameter.
ExpSRM$rate()
new()Constructor
ExpSRM$new(omega = 1, rate = 1)
omegaA value of omega parameter.
rateA value of rate parameter.
init_params()ExpSRM$init_params(data)
em()ExpSRM$em(params, data)
clone()The objects of this class are cloneable with this method.
ExpSRM$clone(deep = FALSE)
deepWhether to make a deep clone.
Rsrat::NHPP -> GammaSRM
shape()Get a shape parameter.
GammaSRM$shape()
rate()Get a rate parameter.
GammaSRM$rate()
new()Constructor.
GammaSRM$new(omega = 1, shape = 1, rate = 1)
omegaA value of omega parameter.
shapeA value of shape parameter.
rateA value of rate parameter.
init_params()GammaSRM$init_params(data)
em()GammaSRM$em(params, data, divide = 15)
clone()The objects of this class are cloneable with this method.
GammaSRM$clone(deep = FALSE)
deepWhether to make a deep clone.
Rsrat::NHPP -> ParetoSRM
shape()ParetoSRM$shape()
scale()ParetoSRM$scale()
new()ParetoSRM$new(omega = 1, shape = 1, scale = 1)
init_params()ParetoSRM$init_params(data)
em()ParetoSRM$em(params, data)
clone()The objects of this class are cloneable with this method.
ParetoSRM$clone(deep = FALSE)
deepWhether to make a deep clone.
Rsrat::NHPP -> TNormSRM
mean()TNormSRM$mean()
sd()TNormSRM$sd()
new()TNormSRM$new(omega = 1, mean = 0, sd = 1)
init_params()TNormSRM$init_params(data)
em()TNormSRM$em(params, data)
clone()The objects of this class are cloneable with this method.
TNormSRM$clone(deep = FALSE)
deepWhether to make a deep clone.
Rsrat::NHPP -> LNormSRM
meanlog()LNormSRM$meanlog()
sdlog()LNormSRM$sdlog()
new()LNormSRM$new(omega = 1, meanlog = 0, sdlog = 1)
init_params()LNormSRM$init_params(data)
em()LNormSRM$em(params, data)
clone()The objects of this class are cloneable with this method.
LNormSRM$clone(deep = FALSE)
deepWhether to make a deep clone.
Rsrat::NHPP -> TLogisSRM
location()TLogisSRM$location()
scale()TLogisSRM$scale()
new()TLogisSRM$new(omega = 1, location = 0, scale = 1)
init_params()TLogisSRM$init_params(data)
em()TLogisSRM$em(params, data)
clone()The objects of this class are cloneable with this method.
TLogisSRM$clone(deep = FALSE)
deepWhether to make a deep clone.
Rsrat::NHPP -> LLogisSRM
locationlog()LLogisSRM$locationlog()
scalelog()LLogisSRM$scalelog()
new()LLogisSRM$new(omega = 1, locationlog = 0, scalelog = 1)
init_params()LLogisSRM$init_params(data)
em()LLogisSRM$em(params, data)
clone()The objects of this class are cloneable with this method.
LLogisSRM$clone(deep = FALSE)
deepWhether to make a deep clone.
Rsrat::NHPP -> TXVMaxSRM
loc()TXVMaxSRM$loc()
scale()TXVMaxSRM$scale()
new()TXVMaxSRM$new(omega = 1, loc = 0, scale = 1)
init_params()TXVMaxSRM$init_params(data)
em()TXVMaxSRM$em(params, data)
clone()The objects of this class are cloneable with this method.
TXVMaxSRM$clone(deep = FALSE)
deepWhether to make a deep clone.
Rsrat::NHPP -> LXVMaxSRM
loclog()LXVMaxSRM$loclog()
scalelog()LXVMaxSRM$scalelog()
new()LXVMaxSRM$new(omega = 1, loclog = 0, scalelog = 1)
init_params()LXVMaxSRM$init_params(data)
em()LXVMaxSRM$em(params, data)
clone()The objects of this class are cloneable with this method.
LXVMaxSRM$clone(deep = FALSE)
deepWhether to make a deep clone.
Rsrat::NHPP -> TXVMinSRM
loc()TXVMinSRM$loc()
scale()TXVMinSRM$scale()
new()TXVMinSRM$new(omega = 1, loc = 0, scale = 1)
init_params()TXVMinSRM$init_params(data)
em()TXVMinSRM$em(params, data)
clone()The objects of this class are cloneable with this method.
TXVMinSRM$clone(deep = FALSE)
deepWhether to make a deep clone.
Rsrat::NHPP -> LXVMinSRM
loclog()LXVMinSRM$loclog()
scalelog()LXVMinSRM$scalelog()
new()LXVMinSRM$new(omega = 1, loclog = 0, scalelog = 1)
init_params()LXVMinSRM$init_params(data)
em()LXVMinSRM$em(params, data)
clone()The objects of this class are cloneable with this method.
LXVMinSRM$clone(deep = FALSE)
deepWhether to make a deep clone.
srm
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.