dGLM | R Documentation |
Class for NHPP-based software reliability model with d-metrics
R6Class
object.
Object of R6Class
with methods for NHPP-based software reliability model with d-metrics.
name
A character string for the name of model.
params
A numeric vector for the model parameters.
df
An integer for the degrees of freedom of the model.
data
Data to esimate parameters.
print()
This method prints model parameters.
omega()
This method returns the number of total faults.
coefficients()
This method returns a vector for the coefficients.
mvf(t, data = NULL)
This method returns the mean value function at time t.
The d-metrics is given from data
. If data
is NULL, the d-metrics for the estimation is used.
dmvf(t, data = NULL)
This method returns the intensity function at time t.
The d-metrics is given from data
. If data
is NULL, the d-metrics for the estimation is used.
residual(t, data = NULL)
This method returns the expected residual number of faults at time t.
The d-metrics is given from data
. If data
is NULL, the d-metrics for the estimation is used.
ffp(t, data = NULL)
This method returns the fault-free probability at time t.
The d-metrics is given from data
. If data
is NULL, the d-metrics for the estimation is used.
init_params(data)
This method changes the model parameters based on a given data. This is used to set the initial value for the fitting algorithm.
set_params(params)
This method sets the model parameters.
set_data(data)
This method sets data.
em(params, data)
This method returns a list with an updated parameter vector (param), absolute difference of parameter vector (pdiff), log-likelihood function for a given parameter vector (llf), the number of total faults (total) via EM algorithm for a given data.
llf(data)
This method returns the log-likelihood function for a given data.
print()
dGLM$print(digits = max(3, getOption("digits") - 3), ...)
omega()
dGLM$omega()
coefficients()
dGLM$coefficients()
mvf()
dGLM$mvf(t, data = NULL)
dmvf()
dGLM$dmvf(t, data = NULL)
residual()
dGLM$residual(t, data = NULL)
ffp()
dGLM$ffp(t, data = NULL)
new()
dGLM$new(omega = 1, coefficients = c(1))
init_params()
dGLM$init_params(data)
set_params()
dGLM$set_params(params)
set_omega()
dGLM$set_omega(params, x)
set_data()
dGLM$set_data(data)
em()
dGLM$em(params, data, ...)
llf()
dGLM$llf(data, fault, omega, mu)
comp_error()
dGLM$comp_error(res0, res1)
clone()
The objects of this class are cloneable with this method.
dGLM$clone(deep = FALSE)
deep
Whether to make a deep clone.
msrat::dGLM
-> dGLM.logit
clone()
The objects of this class are cloneable with this method.
dGLM.logit$clone(deep = FALSE)
deep
Whether to make a deep clone.
msrat::dGLM
-> dGLM.probit
clone()
The objects of this class are cloneable with this method.
dGLM.probit$clone(deep = FALSE)
deep
Whether to make a deep clone.
msrat::dGLM
-> dGLM.cloglog
clone()
The objects of this class are cloneable with this method.
dGLM.cloglog$clone(deep = FALSE)
deep
Whether to make a deep clone.
msrat::dGLM
-> dGLM.penalized
set_penalized()
dGLM.penalized$set_penalized(lambda, alpha = 1)
em()
dGLM.penalized$em(params, data, ...)
llf()
dGLM.penalized$llf(data, fault, omega, mu)
clone()
The objects of this class are cloneable with this method.
dGLM.penalized$clone(deep = FALSE)
deep
Whether to make a deep clone.
msrat::dGLM
-> msrat::dGLM.penalized
-> dGLM.penalized.logit
clone()
The objects of this class are cloneable with this method.
dGLM.penalized.logit$clone(deep = FALSE)
deep
Whether to make a deep clone.
msrat::dGLM
-> msrat::dGLM.penalized
-> dGLM.penalized.probit
clone()
The objects of this class are cloneable with this method.
dGLM.penalized.probit$clone(deep = FALSE)
deep
Whether to make a deep clone.
msrat::dGLM
-> msrat::dGLM.penalized
-> dGLM.penalized.cloglog
clone()
The objects of this class are cloneable with this method.
dGLM.penalized.cloglog$clone(deep = FALSE)
deep
Whether to make a deep clone.
fit.srm.logit
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.