fit.srm.logit: Regression-based software reliability model with d-metrics

View source: R/srm_logit.R

fit.srm.logitR Documentation

Regression-based software reliability model with d-metrics

Description

Estimate model parameters for d-metrics-based software reliability model.

Generate a list of option values.

Usage

fit.srm.logit(
  formula,
  data,
  linkfun = "logit",
  offset = NULL,
  control = list(),
  ...
)

srm.logit.options()

fit.srm.logit.penalized(
  formula,
  data,
  linkfun = "logit",
  offset = NULL,
  control = list(),
  lambda = 1,
  alpha = 1,
  ...
)

Arguments

formula

An object of class formula. A symbolic description of the model to be fitted. The output variable should be the column for the number of faults.

data

A dataframe for d-metrics and the number of faults.

linkfun

A character string indicating a linkfunction. See Details.

offset

An integer. This can be used to specify an a priori known component to be included in the linear predictor during fitting. This should be NULL or a numeric vector of length equal to the number of cases.

control

A list of control parameters. See Details.

...

Other parameters.

lambda

A numeric value for the penalized parameter.

alpha

A numeric value to select from L1 to L2 norm

Details

The control argument is a list that can supply any of the following components:

maxiter

An integer for the maximum number of iterations in the fitting algorithm.

reltol

A numeric value. The algorithm stops if the relative error is less than reltol and the absolute error is less than abstol.

abstol

A numeric value. The algorithm stops if the relative error is less than reltol and the absolute error is less than abstol.

trace

A logical. If TRUE, the intermediate parameters are printed.

printsteps

An integer for print.

The linkfun argument can take the following strings:

logit

A logit function.

probit

A probit function.

cloglog

A complementary log-log function.

Value

A list with components;

initial

A vector for initial parameters.

srm

A class of NHPP. The SRM with the estiamted parameters.

llf

A numeric value for the maximum log-likelihood function.

df

An integer for degrees of freedom.

convergence

A boolean meaning the alorigthm is converged or not.

iter

An integer for the number of iterations.

aerror

A numeric value for absolute error.

rerror

A numeric value for relative error.

data

The data used.

linkfun

The linkfunction used.

formula

The formula supplied.

ctime

A numeric value for computation time.

terms

The terms object used.

call

The method call.

A list of options.

Examples

data(dmet)
fit.srm.logit(formula=fault~., data=dmet.ds1)

okamumu/msrat documentation built on Jan. 17, 2024, 11:55 a.m.