View source: R/compute_TF_activity.R
compute_TF_activity | R Documentation |
Infers transcription factor (TF) activity from TPM bulk gene expression using DoRothEA method from Garcia-Alonso et al., Genome Res, 2019.
compute_TF_activity(RNA_tpm = NULL, verbose = TRUE)
RNA_tpm |
data.frame containing TPM values with HGNC symbols in rows and samples in columns. |
verbose |
logical value indicating whether to display messages about the number of regulated genes found in the gene expression data provided. |
A numeric matrix of activity scores with samples in rows and TFs in columns.
Garcia-Alonso L, Holland CH, Ibrahim MM, Turei D, Saez-Rodriguez J. "Benchmark and integration of resources for the estimation of human transcription factor activities." Genome Research. 2019. DOI: 10.1101/gr.240663.118.
# using a SummarizedExperiment object
library(SummarizedExperiment)
# Using example exemplary dataset (Mariathasan et al., Nature, 2018)
# from easierData. Original processed data is available from
# IMvigor210CoreBiologies package.
library("easierData")
dataset_mariathasan <- easierData::get_Mariathasan2018_PDL1_treatment()
RNA_tpm <- assays(dataset_mariathasan)[["tpm"]]
# Select a subset of patients to reduce vignette building time.
pat_subset <- c(
"SAM76a431ba6ce1", "SAMd3bd67996035", "SAMd3601288319e",
"SAMba1a34b5a060", "SAM18a4dabbc557"
)
RNA_tpm <- RNA_tpm[, colnames(RNA_tpm) %in% pat_subset]
# Computation of TF activity (Garcia-Alonso et al., Genome Res, 2019)
tf_activity <- compute_TF_activity(
RNA_tpm = RNA_tpm
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.