Description Usage Arguments Note References Examples
Compute the power of the two-sided one-sample multivariate equivalence test for population means of multivariate normal summary values with unknown population variance.
| 1 2 | 
| rho | Vector of quantiles | 
| cl | Lower boundary point of the critical region | 
| cu | Upper boundary point of the critical region | 
| n.of.y | Number of replicate simulations | 
| p | Number of variables | 
| support | Support of the truncated power function (vector of dimension 2). | 
| log | If  | 
The power function can be truncated to support.
http://arxiv.org/abs/1305.4283
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | # power function of the two-sided F-test, to test equality of means for multivariate
# normal samples with unknown covariance matrix
n		<- 10
p		<- 3
cu		<- 8
rho 	<- seq(0, 2, length = 1024)
tmp <- lapply(c(0.01, 0.5, 1, 2, 3, 4, 5, 6, 7), function(cl)
		{
			data.table(cl = as.factor(cl), cu=cu, rho = rho, power = tsftest.pow(rho, cl, cu, n, p))
		})
tmp	<- do.call('rbind', tmp)
pp <- ggplot(tmp, aes(x = rho, y = power, colour = cl, group = cl)) + geom_line() + labs(y = 'Power\n(ABC acceptance probability)')
print(pp)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.