#' @title
#' Minenergo-278. Normative heat loss of pipe in channel
#'
#' @family Minenergo
#'
#' @description
#' Calculate normative heat loss of the supplying pipe mounted in underground channel
#' as a function of construction, operation, and technical condition
#' specifications according to
#' Appendix 5.1 of \href{https://docs.cntd.ru/document/1200035568}{Minenergo Method 278}.
#'
#' This type of calculations is usually made on design stage of district
#' heating network (where water is a heat carrier) and is closely related
#' to building codes and regulations.
#'
#' @param t1
#' temperature of heat carrier (water) inside the supplying pipe, [\emph{°C}].
#' Type: \code{\link{assert_double}}.
#' @param t2
#' temperature of heat carrier (water) inside the returning pipe, [\emph{°C}].
#' Type: \code{\link{assert_double}}.
#' @param t0
#' temperature of environment, [\emph{°C}]. In case of channel laying this is
#' the temperature of subsoil. Type: \code{\link{assert_double}}.
#' @param insd1
#' thickness of the insulator which covers the supplying pipe, [\emph{m}].
#' Type: \code{\link{assert_double}}.
#' @param insd2
#' thickness of the insulator which covers the returning pipe, [\emph{m}].
#' Type: \code{\link{assert_double}}.
#' @param d1
#' outside diameter of supplying pipe, [\emph{m}]. Type: \code{\link{assert_double}}.
#' @param d2
#' outside diameter of returning pipe, [\emph{m}]. Type: \code{\link{assert_double}}.
#' @param lambda1
#' thermal conductivity of insulator which covers the supplying pipe
#' [\emph{W/m/°C}]. Type: \code{\link{assert_double}}.
#' @param lambda2
#' thermal conductivity of insulator which covers the returning pipe
#' [\emph{W/m/°C}]. Type: \code{\link{assert_double}}.
#' @param k1
#' technical condition factor for insulator of supplying pipe, [].
#' Type: \code{\link{assert_double}}.
#' @param k2
#' technical condition factor for insulator of returning pipe, [].
#' Type: \code{\link{assert_double}}.
#' @param lambda0
#' thermal conductivity of environment, [\emph{W/m/°C}]. In case of channel
#' laying this is the thermal conductivity of subsoil. Type: \code{\link{assert_double}}.
#' @param z
#' channel laying depth, [\emph{m}]. Type: \code{\link{assert_double}}.
#' @param b
#' channel width, [\emph{m}]. Type: \code{\link{assert_double}}.
#' @param h
#' channel height, [\emph{m}]. Type: \code{\link{assert_double}}.
#' @param len
#' length of supplying pipe, [\emph{m}]. Type: \code{\link{assert_double}}.
#' @param duration
#' duration of heat loss, [\emph{hour}]. Type: \code{\link{assert_double}}.
#'
#' @return
#' Normative heat loss of supplying cylindrical pipe mounted in channel during \code{duration}, [\emph{kcal}].
#' If \code{len} of pipe is 1 \emph{m} (meter) as well as \code{duration} is set to
#' 1 \emph{h} (hour) (default values) then the return value is also the
#' \emph{specific heat loss power}, [\emph{kcal/m/h}] and so comparable with those
#' prescribed by \href{https://docs.cntd.ru/document/902148459}{Minenergo Order 325}.
#' Type: \code{\link{assert_double}}.
#'
#' @details
#' \code{k1} and \code{k2} factor values equal to \code{1} mean the best technical
#' condition of insulation of appropriate pipes, whereas for poor technical
#' state factor values tends to \code{5} or more.
#'
#' Nevertheless, when \code{k1} and \code{k2} both equal to \code{1} the calculated
#' \emph{specific heat loss power} [\emph{kcal/m/h}] is sometimes higher than that listed in
#' \href{https://docs.cntd.ru/document/902148459}{Minenergo Order 325}.
#' One should consider that situation when choosing method for heat loss
#' calculations.
#' @export
#'
#' @examples
#' library(pipenostics)
#'
#' m278hlcha()
#' #
#'
#' ## Naive way to find out technical state (factors k1 and k2) for pipe
#' ## segments constructed in 1980:
#' optim(
#' par = c(1.5, 1.5),
#' fn = function(x) {
#' # functional to optimize
#' abs(
#' m278hlcha(k1 = x[1], k2 = x[2]) -
#' m325nhl(year = 1980, laying = "channel", d = 250, temperature = 110)
#' )
#' },
#' method = "L-BFGS-B",
#' lower = 1.01, upper = 4.4
#' )$par
#' # [1] 4.285442 4.323628
#'
m278hlcha <-
function(t1 = 110, t2 = 60, t0 = 5, insd1 = 0.1, insd2 = insd1, d1 = .25,
d2 = d1, lambda1 = 0.09, lambda2 = 0.07, k1 = 1, k2 = k1,
lambda0 = 1.74, z = 2, b = 0.5, h = 0.5, len = 1, duration = 1) {
checkmate::assert_double(
t1,
lower = 0,
upper = 450,
finite = TRUE,
any.missing = FALSE,
min.len = 1L
)
checkmate::assert_double(
t2,
lower = 0,
upper = 450,
finite = TRUE,
any.missing = FALSE,
min.len = 1L
)
checkmate::assert_double(
t0,
lower = -15,
upper = 30,
finite = TRUE,
any.missing = FALSE,
min.len = 1L
)
checkmate::assert_double(
insd1,
lower = 0,
upper = .5,
finite = TRUE,
any.missing = FALSE,
min.len = 1L
)
checkmate::assert_double(
insd2,
lower = 0,
upper = .5,
finite = TRUE,
any.missing = FALSE,
min.len = 1L
)
checkmate::assert_double(
d1,
lower = .2,
upper = 1.5,
finite = TRUE,
any.missing = FALSE,
min.len = 1L
)
checkmate::assert_double(
d2,
lower = .2,
upper = 1.5,
finite = TRUE,
any.missing = FALSE,
min.len = 1L
)
checkmate::assert_double(
lambda1,
lower = 1e-3,
upper = 1,
finite = TRUE,
any.missing = FALSE,
min.len = 1L
)
checkmate::assert_double(
lambda2,
lower = 1e-3,
upper = 1,
finite = TRUE,
any.missing = FALSE,
min.len = 1L
)
checkmate::assert_double(
k1,
lower = 1,
upper = 4.5,
finite = TRUE,
any.missing = FALSE,
min.len = 1L
)
checkmate::assert_double(
k2,
lower = 1,
upper = 4.5,
finite = TRUE,
any.missing = FALSE,
min.len = 1L
)
checkmate::assert_double(
lambda0,
lower = 1e-3,
upper = 3,
finite = TRUE,
any.missing = FALSE,
min.len = 1L
)
checkmate::assert_double(
z,
lower = .1,
upper = 10,
finite = TRUE,
any.missing = FALSE,
min.len = 1L
)
checkmate::assert_double(
b,
lower = min(d1, d2),
upper = 10,
finite = TRUE,
any.missing = FALSE,
min.len = 1L
)
checkmate::assert_double(
h,
lower = min(d1, d2),
upper = 10,
finite = TRUE,
any.missing = FALSE,
min.len = 1L
)
checkmate::assert_double(
len,
lower = 0,
finite = TRUE,
any.missing = FALSE,
min.len = 1L
)
checkmate::assert_double(duration,
lower = 0,
finite = TRUE,
any.missing = FALSE,
min.len = 1L
)
checkmate::assert_true(commensurable(c(
length(t1), length(t2), length(t0), length(insd1), length(insd2),
length(d1), length(d2), length(lambda1), length(lambda2), length(k1),
length(k2), length(lambda0), length(z), length(b), length(h), length(len),
length(duration)
)))
R0 <- log(3.5 * z / h * (h / b) ^ .25) / lambda0 / (5.7 + .5 * b / h)
d <- 2 * b * h / (b + h)
R_chan_air <- 1 / (8 * pi * d)
R1_air <- 1 / (8 * pi * (d1 + 2 * insd1))
R2_air <- 1 / (8 * pi * (d2 + 2 * insd2))
R1_ins <- log(1 + 2 * insd1 / d1) / (2 * pi * k1 * lambda1)
R2_ins <- log(1 + 2 * insd2 / d2) / (2 * pi * k2 * lambda2)
t_chan <-
(t1 / (R1_ins + R1_air) + t2 / (R2_ins + R2_air) + t0 / (R_chan_air + R0)) /
(1 / (R1_ins + R1_air) + 1 / (R2_ins + R2_air) + 1 / (R_chan_air + R0))
q <- (t_chan - t0) / (R_chan_air + R0)
q * len * duration
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.