gen_agg_preds: Generate aggregate predictions

Description Usage Arguments

View source: R/macro_gen_aggregate_preds.R

Description

Super-function that generates aggregate predictions a la carte.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
gen_agg_preds(
  atomic_df,
  start_agg,
  sotw,
  baseline = TRUE,
  caliper = TRUE,
  mahala = TRUE,
  cw = 5,
  mvc = 10,
  matching_vars = NULL
)

Arguments

atomic_df

Data frame containing the atomic predictions to base the aggregate predictions on.

start_agg

Which time point to generate the first aggregate prediction for.

sotw

Decision maker data set, observation one should correspond to start_t used to generate the atomic predictions.

baseline

Whether to generate the baseline aggregations (gewisano and equal weights). Defaults to TRUE.

caliper

Whether to generate RAP based on the caliper method. Defaults to TRUE.

mahala

Whether to generate RAP based on the mahalanobis method. Defaults to TRUE.

cw

Tolerance parameter for the caliper method. Defaults to 5. Caliper width.

mvc

Minimum viable cluster size, ie minimum amount of observations required within the cluster to not combine with the global mean.

matching_vars

Data frame with matching variables, ie pooling variables we want to fully match. First column should be t (and correspond in time to the other t columns).


ooelrich/oscbvar documentation built on Sept. 8, 2021, 3:31 p.m.