#' @title Generate aggregate predictions
#'
#' @description
#' Super-function that generates aggregate predictions a la carte.
#'
#' @param atomic_df Data frame containing the atomic predictions to
#' base the aggregate predictions on.
#' @param start_agg Which time point to generate the first aggregate
#' prediction for.
#' @param sotw Decision maker data set, observation one should
#' correspond to start_t used to generate the atomic predictions.
#' @param baseline Whether to generate the baseline aggregations
#' (gewisano and equal weights). Defaults to TRUE.
#' @param caliper Whether to generate RAP based on the caliper method.
#' Defaults to TRUE.
#' @param mahala Whether to generate RAP based on the mahalanobis
#' method. Defaults to TRUE.
#' @param cw Tolerance parameter for the caliper method. Defaults to
#' 5. Caliper width.
#' @param mvc Minimum viable cluster size, ie minimum amount of
#' observations required within the cluster to not combine with the
#' global mean.
#' @param matching_vars Data frame with matching variables, ie pooling
#' variables we want to fully match. First column should be t (and
#' correspond in time to the other t columns).
#'
#' @import data.table
#' @export
gen_agg_preds <- function(
atomic_df,
start_agg,
sotw,
baseline = TRUE,
caliper = TRUE,
mahala = TRUE,
cw = 5,
mvc = 10,
matching_vars = NULL
) {
df_agg <- gen_atomic_df()
if (baseline) {
df_base <- gen_baseline(atomic_df, start_agg)
df_agg <- rbind(df_agg, df_base)
}
if (caliper) {
weight_df <- caliper_relevance_new(
atomic_df,
sotw,
start_agg,
cw,
matching_vars
)
RAL_data <- RAL_calculator(weight_df, atomic_df)
df_cal_prop <- gen_RAA(RAL_data, "propto", "caliper")
# df_cal_sel <- gen_RAA(RAL_data, "select_best", "caliper")
df_agg <- rbind(
df_agg,
df_cal_prop
#,df_cal_sel
)
}
if (mahala) {
#weight_df <- mahala_relevance(atomic_df, sotw, start_agg)
RAL_data <- RAL_calculator(weight_df, atomic_df)
df_mahala_prop <- gen_RAA(RAL_data, "propto", "mahala")
df_mahala_sel <- gen_RAA(RAL_data, "select_best", "mahala")
df_agg <- rbind(df_agg, df_mahala_prop, df_mahala_sel)
}
return(df_agg)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.