q.analysis: Do a Q-Method analysis on the dataset

Description Usage Arguments Value Note See Also Examples

View source: R/q.method.R

Description

Do a Q-Method analysis on the dataset

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
q.analysis(
  q = NULL,
  q.df = get.q.df(q),
  only.complete = T,
  nfactors = 3,
  rotation = "varimax",
  cor.method = "kendall",
  nsteps = NULL,
  indet = "qindtest"
)

Arguments

q

A, open.pci.q object from get.q()

q.df

Alternatively to q, provide a data.frame from get.q.df()

only.complete

Boolean. Only include persons who have used all statements.

nfactors

The number of factors to extract.

rotation

The type of rotation to use

cor.method

Which method to use for the correlations in cor() ("pearson", "spearmann", "kendall"). Pearson is default in qmethod, but given that the data is ordinal, not interval scaled, Kendall's tau is default in q.analysis.

nsteps

The number of repetitions to use when bootstrapping (to get estimates of standard errors and bias). See qmboots().

indet

Indeterminacy method ("qindtest", "procrustes"). Default is qindtest, use procrustes for more than three factors. See qmboots().

Value

Returns an object of QmethodRes. See qmethod() for explanation.

Note

The analysis is done by the qmethod-package.

See Also

qmethod(), qmboots(), cor(), plot.QmethodRes().

Examples

1
2
3
4
qjson<-c("[[\"Running\"],[\"Walking\",\"Crawling\"],[\"Jumping\",\"Sprinting\",\"Jogging\"],[\"Strolling\",\"\",\"Standing\",\"Sitting\"]]",
         "[[\"Sitting\"],[\"Strolling\",\"Jogging\"],[\"Standing\",\"Sprinting\",\"Crawling\"],[\"Walking\",\"Running\",\"Jumping\"]]")
q<-get.q(qjson)
q.analysis(q)

openPCI/OpenPCIScoring documentation built on June 10, 2021, 1:18 p.m.