#' Get summary statistics for a numeric vector
#'
#' @export
desc_stat <- function(x) {
#{{{
if(typeof(x) == 'list') x = x %>% pull(1)
x = x[!is.na(x)]
tibble(statK = c('q0','q5','q25','q50','q75','q95','q100',
'avg','sd','iqr','mad'),
statV = c(map_dbl(c(0,.05,.25,.5,.75,.95,1), .f <- function(y) quantile(x,y)),
mean(x), sd(x), IQR(x), mad(x)))
#}}}
}
#' simple t-test to mark significance
#'
#' @export
ttest_signif <- function(x, y) t.test(x, y)$p.value
map_signif <- function(p) ifelse(p<0.001, "***",
ifelse(p<0.01, "**", ifelse(p<0.05, '*', 'NS')))
#' Modified standard deviation funciton after removing missing values
#'
#' @export
sd2 <- function(x) sd(x[!(is.na(x) | is.infinite(x) | is.nan(x))])
#' Get summary statistics for the 2nd+ columns of a tibble
#'
#' @export
sum_stat_tibble <- function(ti) {
#{{{
statks = colnames(ti)[-1]
to = ti %>% rename(sid = 1) %>%
gather(stat, v, -sid) %>%
mutate(stat = factor(stat, levels=statks)) %>%
group_by(stat) %>%
summarise(n=n(), q0=quantile(v,0), q5=quantile(v,.05), q25=quantile(v,.25),
q50=quantile(v,.5), q75=quantile(v,.75), q95=quantile(v,.95),
q100=quantile(v,1), avg=mean(v), std=sd(v),
iqr=IQR(v), mad=mad(v)) %>% ungroup()
to
#}}}
}
#' get most frequent item in a vector
#'
#' @export
Mode <- function(x) {
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
.ls.objects <- function(pos=1, pattern, order.by, decreasing=F, head=F, n=5) {
#{{{
napply <- function(names, fn) sapply(names, function(x) fn(get(x, pos=pos)))
names <- ls(pos = pos, pattern = pattern)
obj.class <- napply(names, function(x) as.character(class(x))[1])
obj.mode <- napply(names, mode)
obj.type <- ifelse(is.na(obj.class), obj.mode, obj.class)
obj.prettysize <- napply(names, function(x) {
capture.output(print(object.size(x), units = "auto")) })
obj.size <- napply(names, object.size)
obj.dim <- t(napply(names, function(x)
as.numeric(dim(x))[1:2]))
vec <- is.na(obj.dim)[, 1] & (obj.type != "function")
obj.dim[vec, 1] <- napply(names, length)[vec]
out <- data.frame(obj.type, obj.size, obj.prettysize, obj.dim)
names(out) <- c("Type", "Size", "PrettySize", "Rows", "Columns")
if (!missing(order.by))
out <- out[order(out[[order.by]], decreasing=decreasing), ]
if (head)
out <- head(out, n)
out
#}}}
}
#' Improved List of Objects
#'
#' @export
lsos <- function(..., n=10) .ls.objects(..., order.by="Size", decreasing=T, head=T, n=n)
#' sort utility
#'
#' @export
sortC <- function(...) {
#{{{
a <- Sys.getlocale("LC_COLLATE")
on.exit(Sys.setlocale("LC_COLLATE", a))
Sys.setlocale("LC_COLLATE", "C")
sort(...)
#}}}
}
#' set bound to a value/vector
#'
#' @export
set_bound <- function(x, minV, maxV) min(max(x,minV),maxV)
#' a unified distance function with custome methods
#'
#' @export
idist <- function(m, opt='row', method='euclidean', ...) {
#{{{ be default clusters by column
if( method %in% c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski") ) {
m2 = if (opt == 'row') m else t(m)
dist(m2, method = method, ...)
} else if(method %in% c("pearson",'spearman','kendall')) {
m2 = if (opt == 'row') t(m) else m
as.dist(1-cor(m2, method = method, ...))
} else if (method == 'gower') {
as.dist(as.matrix(daisy(m, metric=method)))
} else {
stop("unsupported dist method: \n", method)
}
#}}}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.