# Then we do importance sampling for Spearman distance
n_items <- seq(from = 30L, to = 40L, by = 1L)
num_workers <- as.integer(Sys.getenv("SLURM_NTASKS")) - 1
cl <- parallel::makeCluster(num_workers)
doParallel::registerDoParallel(cl)
system.time({
estimates <- foreach::foreach(it = n_items) %dopar% {
BayesMallows::estimate_partition_function(
alpha_vector = seq(from = 0, to = 20, by = .1),
n_items = it, metric = "spearman", nmc = 1e6,
degree = 9
)
}
})
parallel::stopCluster(cl)
estimates <- dplyr::tibble(
n_items = n_items,
values = estimates
) %>%
dplyr::mutate(
metric = "spearman",
type = "importance_sampling",
message = "Partition function estimated with importance sampling for alpha between 0 and 20."
)
save(estimates, file = "estimates.RData")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.