knitr::opts_chunk$set(echo = TRUE, warning = FALSE)
MPSproto is a R-package for interpreting MPS-STR mixtures. It requires a calibrated model in order to do so. The user can choose between two models for the reads: Gamma or NegativeBinomial. The differences are demonstrated in this tutorial.
library(MPSproto) #load package pkg = path.package("MPSproto") #get package install folder path = paste0(pkg,"/examples") #path of data to use #Obtain calibrated model calibratedModelFile = paste0(path,"/tutorialDataCalibrated.RDS") #file name for the calibrated model calibration = readRDS(calibratedModelFile) #obtain the calibrated object #We import the allele frequency freqFile = paste0(path,"/ForenSeq_NIST1036cauc_FWbrack.csv") #frequency file to use popFreq = importMPSfreqs(freqFile)[[1]] #import evidence and reference profiles evidData = importMPSsample(paste0(path,"/MPS_evid2p.csv") ) #LOAD EVIDENCE DATA refData = importMPSsample(paste0(path,"/MPS_evid2p_refs.csv") ) #LOAD REFERENCE DATA plotMPS(evidData,refData) #Show in graphical interface #Note: Ensure that the alleles are all in forward direction for all markers (not UAS)
Hypothesis set: minor as POI \ Hp: ref1 + 1 unknown \ Hd: 2 unknowns
NOC = 2 #Number of contributors fst0 = 0.01 #coancestry coefficient hypHp = list(NOC=NOC,cond=c(1,0),fst=fst0) #(also include fst here) hypHd = list(NOC=NOC,cond=c(0,0),fst=fst0,knownRef=1) #(also include fst here) #If the major was evaluated as POI instead then #hypHp = list(NOC=NOC,cond=c(0,1),fst=fst0) #(also include fst here)
mleHp = inferEvidence(evidData,popFreq,refData,hypHp , calibration, verbose=FALSE,model="GA") mleHd = inferEvidence(evidData,popFreq,refData,hypHd , calibration, verbose=FALSE,model="GA") #Obtain calculated LR par = getPar(mleHp,mleHd) #get estimated parameters LR = getLR(mleHp,mleHd) #get calculated LR (unlogged) log10LR = getlog10LR(mleHp,mleHd) #log10 scale log10LR par #Perform model validation validhp = validMLE(mleHp,"Hp",verbose=FALSE) validhd = validMLE(mleHd,"Hd",verbose=FALSE) #Provide deconvolution DCtableHp = deconvolve(mleHp)$table2 DCtableHd = deconvolve(mleHd)$table2 #Show model fit (expectation vs observations) plotTopMPS(mleHp) plotTopMPS(mleHd)
mleHp = inferEvidence(evidData,popFreq,refData,hypHp , calibration, verbose=FALSE,model="NB") mleHd = inferEvidence(evidData,popFreq,refData,hypHd , calibration, verbose=FALSE,model="NB") #Obtain calculated LR par = getPar(mleHp,mleHd) #get estimated parameters LR = getLR(mleHp,mleHd) #get calculated LR (unlogged) log10LR = getlog10LR(mleHp,mleHd) #log10 scale log10LR par #Perform model validation validhp = validMLE(mleHp,"Hp",verbose=FALSE) validhd = validMLE(mleHd,"Hd",verbose=FALSE) #Provide deconvolution DCtableHp = deconvolve(mleHp)$table2 DCtableHd = deconvolve(mleHd)$table2 #Show model fit (expectation vs observations) plotTopMPS(mleHp) plotTopMPS(mleHd)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.