Description Usage Arguments Details Value Author(s) Examples
View source: R/MarginalEvid_FullBayesian.R
Calculating the marginal evidence for the data
1 2 3 4 5 6 7 8 | MarginalEvid_FullBayesian(
Data_Y,
Data_time,
nu0 = 1,
Lambda0 = 1,
Sigma0 = 1,
Beta0 = NULL
)
|
Data_Y |
This is observed multi-responses (nsamples x nsites) |
Data_time |
This is observed times (nsamples vector) |
nu0 |
degrees of freedom hyperparameter of invWishart prior distribution (should be 0=non-informative or 1=informative) |
Lambda0 |
Scale matrix hyperparameter of invWishart prior distribution of Covariance (can be numeric or matrix) |
Sigma0 |
Covariance hyperparameter of Normal prior distribution of beta (can be numeric, 2 or 3 long vector) |
Beta0 |
Mean hyperparameter of Normal prior distribution of beta (can be 2 long vector or matrix) |
This function provides the marginal evidence value based on all the data
Model: A full Bayesian model (takes into account the uncertainty of the parameters) p(Y|time) = int_theta p(Y|time,theta)p(theta) d_theta Where p(Y|time,theta)=MVN(b0 + b1*time, SIGMA), SIGMA= COVARIANCE MATRIX with latent priors 'normal-invWishart' p(b0,b1|SIGMA)=MVN(0,0, diag(sig0 SIGMA,sig1 SIGMA)) p(SIGMA) = invWishart(Lambda0,nu0), where diag(Lambda0) = lam0
Marginal evidence p(Y|eta) = int_theta p(Y|theta)p(theta|eta)d theta
The numerical marginal evidence
Oyvind Bleka
1 2 3 4 5 6 7 8 | ## Not run:
n = 100
dat = genData(n,seed=1)
Data_Y = dat$Data_Y
Data_time = dat$Data_time
modelEvid = MarginalEvid_FullBayesian(Data_Y, Data_time)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.