Description Usage Arguments Details Value Author(s) Examples
View source: R/posteriorTime_NaiveMLE.R
Calculating the posterior distribution of time for new individuals
1 2 3 4 5 6 7 8 | posteriorTime_NaiveMLE(
New_Y,
Data_Y,
Data_time,
maxTime = 12,
delta = 0.01,
priorTime = NULL
)
|
New_Y |
The observed response for new individuals (nsamples x nsites) matrix (also possible with vector) |
Data_Y |
This is observed multi-responses (nsamples x nsites) |
Data_time |
This is observed times (nsamples vector) |
maxTime |
maximum of time (upper limit) |
delta |
Grid size for the time variable |
priorTime |
A prior distribution for the time variable (NULL means uniform distribution) |
This function provides posterior distribution of time, based on a multivariate model (Naive MLE approach), where time as a continuous exploratory variable from zero to maxTime
Prediction: Applying Bayes Theorem: p(time|Y) = konstant x p(Y|time) x p(time) We assume an uniform prior for p(log(time))=unif, gives p(time)=1/t
Model: p(Y|time,theta)=MVN(b0 + b1*time, SIGMA), SIGMA= COVARIANCE MATRIX where theta is estimated using maximum likelihood estimation (MLE), provided as theta_hat
Predictor p(Ynew|time)=p(Ynew|time,theta=theta_hat)
ret list with posterior distribution for each new individuals (separate list for univariate prediction and all combined)
Oyvind Bleka
1 2 3 4 5 6 7 8 9 10 11 | ## Not run:
ntrain = 100
ntest = 100
dat = genData(ntrain+ ntest,seed=1)
Data_Y = dat$Data_Y[1:ntrain,]
Data_time = dat$Data_time[1:ntrain]
New_Y = dat$Data_Y[-(1:ntrain),]
New_time = dat$Data_time[-(1:ntrain)]
predObj = posteriorTime_NaiveMLE(New_Y, Data_Y, Data_time)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.