### library(poolr); library(testthat); Sys.setenv(NOT_CRAN="true")
source("tolerances.r")
context("Checking bonferroni() function")
test_that("bonferroni() works correctly under independence.", {
res <- bonferroni(grid2ip.p)
out <- capture.output(print(res))
expect_equivalent(c(res$p), 0.03881585, tolerance = p_tol)
expect_equivalent(c(res$statistic), 0.001687646, tolerance = stat_tol)
})
test_that("bonferroni() works correctly with effective number of tests.", {
res_nyh <- bonferroni(grid2ip.p, adjust = "nyholt", R = mvnconv(grid2ip.ld, target = "p", cov2cor = TRUE))
res_lj <- bonferroni(grid2ip.p, adjust = "liji", R = mvnconv(grid2ip.ld, target = "p", cov2cor = TRUE))
res_gao <- bonferroni(grid2ip.p, adjust = "gao", R = mvnconv(grid2ip.ld, target = "p", cov2cor = TRUE))
res_gal <- bonferroni(grid2ip.p, adjust = "galwey", R = mvnconv(grid2ip.ld, target = "p", cov2cor = TRUE))
res_user <- bonferroni(grid2ip.p, m = 18)
out <- capture.output(print(res_nyh))
out <- capture.output(print(res_lj))
out <- capture.output(print(res_gao))
out <- capture.output(print(res_gal))
out <- capture.output(print(res_user))
expect_equivalent(c(res_nyh$p), 0.0371282, tolerance = p_tol)
expect_equivalent(c(res_nyh$statistic), 0.001687646, tolerance = stat_tol)
expect_equivalent(c(res_lj$p), 0.03544056, tolerance = p_tol)
expect_equivalent(c(res_lj$statistic), 0.001687646, tolerance = stat_tol)
expect_equivalent(c(res_gao$p), 0.03881585, tolerance = p_tol)
expect_equivalent(c(res_gao$statistic), 0.001687646, tolerance = stat_tol)
expect_equivalent(c(res_gal$p), 0.03375291, tolerance = p_tol)
expect_equivalent(c(res_gal$statistic), 0.001687646, tolerance = stat_tol)
expect_equivalent(c(res_user$p), 0.03037762, tolerance = p_tol)
expect_equivalent(c(res_user$statistic), 0.001687646, tolerance = stat_tol)
})
test_that("bonferroni() works correctly with empirically-derived null distributions.", {
set.seed(1234)
res <- bonferroni(grid2ip.p, adjust = "empirical", R = grid2ip.ld)
out <- capture.output(print(res))
expect_equivalent(c(res$p), 0.03229677, tolerance = p_tol * emp_sca)
expect_equivalent(c(res$statistic), 0.001687646, tolerance = stat_tol * emp_sca)
expect_equivalent(c(res$ci[1]), 0.02891875, tolerance = p_tol * emp_sca)
expect_equivalent(c(res$ci[2]), 0.0359506, tolerance = p_tol * emp_sca)
set.seed(1234)
res <- bonferroni(grid2ip.p, adjust = "empirical", R = grid2ip.ld, size = 100000)
out <- capture.output(print(res))
expect_equivalent(c(res$p), 0.03065969, tolerance = p_tol * emp_sca)
expect_equivalent(c(res$statistic), 0.001687646, tolerance = stat_tol * emp_sca)
expect_equivalent(c(res$ci[1]), 0.02959984, tolerance = p_tol * emp_sca)
expect_equivalent(c(res$ci[2]), 0.03174688, tolerance = p_tol * emp_sca)
set.seed(1234)
res <- bonferroni(grid2ip.p, adjust = "empirical", R = grid2ip.ld, size = 1000000, batchsize = 1000)
out <- capture.output(print(res))
expect_equivalent(c(res$p), 0.03024897, tolerance = p_tol * emp_sca)
expect_equivalent(c(res$statistic), 0.001687646, tolerance = stat_tol * emp_sca)
expect_equivalent(c(res$ci[1]), 0.02991414, tolerance = p_tol * emp_sca)
expect_equivalent(c(res$ci[2]), 0.03058652, tolerance = p_tol * emp_sca)
set.seed(1234)
res <- bonferroni(grid2ip.p, adjust = "empirical", R = grid2ip.ld, size = c(1000, 10000, 100000), threshold = c(0.10, 0.01))
out <- capture.output(print(res))
expect_equivalent(c(res$p), 0.03139686, tolerance = p_tol * emp_sca)
expect_equivalent(c(res$statistic), 0.001687646, tolerance = stat_tol * emp_sca)
expect_equivalent(c(res$ci[1]), 0.02806613, tolerance = p_tol * emp_sca)
expect_equivalent(c(res$ci[2]), 0.035004, tolerance = p_tol * emp_sca)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.