### library(poolr); library(testthat); Sys.setenv(NOT_CRAN="true")
source("tolerances.r")
context("Checking invchisq() function")
test_that("invchisq() works correctly under independence.", {
res <- invchisq(grid2ip.p)
out <- capture.output(print(res))
expect_equivalent(c(res$p), 4.447048e-09, tolerance = p_tol)
expect_equivalent(c(res$statistic), 85.21864, tolerance = stat_tol)
expect_equivalent(attributes(res$statistic)$df, 23, tolerance = df_tol)
})
test_that("invchisq() works correctly with effective number of tests.", {
res_nyh <- invchisq(grid2ip.p, adjust = "nyholt", R = mvnconv(grid2ip.ld, target = "p", cov2cor = TRUE))
res_lj <- invchisq(grid2ip.p, adjust = "liji", R = mvnconv(grid2ip.ld, target = "p", cov2cor = TRUE))
res_gao <- invchisq(grid2ip.p, adjust = "gao", R = mvnconv(grid2ip.ld, target = "p", cov2cor = TRUE))
res_gal <- invchisq(grid2ip.p, adjust = "galwey", R = mvnconv(grid2ip.ld, target = "p", cov2cor = TRUE))
res_user <- invchisq(grid2ip.p, m = 18)
out <- capture.output(print(res_nyh))
out <- capture.output(print(res_lj))
out <- capture.output(print(res_gao))
out <- capture.output(print(res_gal))
out <- capture.output(print(res_user))
expect_equivalent(c(res_nyh$p), 9.116737e-09, tolerance = p_tol)
expect_equivalent(c(res_nyh$statistic), 81.51348, tolerance = stat_tol)
expect_equivalent(c(res_lj$p), 1.870575e-08, tolerance = p_tol)
expect_equivalent(c(res_lj$statistic), 77.80832, tolerance = stat_tol)
expect_equivalent(c(res_gao$p), 4.447048e-09, tolerance = p_tol)
expect_equivalent(c(res_gao$statistic), 85.21864, tolerance = stat_tol)
expect_equivalent(c(res_gal$p), 3.841594e-08, tolerance = p_tol)
expect_equivalent(c(res_gal$statistic), 74.10316, tolerance = stat_tol)
expect_equivalent(c(res_user$p), 1.625318e-07, tolerance = p_tol)
expect_equivalent(c(res_user$statistic), 66.69285, tolerance = stat_tol)
})
test_that("invchisq() works correctly with empirically-derived null distributions.", {
set.seed(1234)
res <- invchisq(grid2ip.p, adjust = "empirical", R = grid2ip.ld)
out <- capture.output(print(res))
expect_equivalent(c(res$p), 0.00069993, tolerance = p_tol * emp_sca)
expect_equivalent(c(res$statistic), 85.21864, tolerance = stat_tol * emp_sca)
expect_equivalent(c(res$ci[1]), 0.000281453, tolerance = p_tol * emp_sca)
expect_equivalent(c(res$ci[2]), 0.001441588, tolerance = p_tol * emp_sca)
expect_equivalent(attributes(res$statistic)$df, 23, tolerance = df_tol)
set.seed(1234)
res <- invchisq(grid2ip.p, adjust = "empirical", R = grid2ip.ld, size = 100000)
out <- capture.output(print(res))
expect_equivalent(c(res$p), 0.001209988, tolerance = p_tol * emp_sca)
expect_equivalent(c(res$statistic), 85.21864, tolerance = stat_tol * emp_sca)
expect_equivalent(c(res$ci[1]), 0.001004114, tolerance = p_tol * emp_sca)
expect_equivalent(c(res$ci[2]), 0.001445611, tolerance = p_tol * emp_sca)
expect_equivalent(attributes(res$statistic)$df, 23, tolerance = df_tol)
set.seed(1234)
res <- invchisq(grid2ip.p, adjust = "empirical", R = grid2ip.ld, size = 1000000, batchsize = 1000)
out <- capture.output(print(res))
expect_equivalent(c(res$p), 0.001142999, tolerance = p_tol * emp_sca)
expect_equivalent(c(res$statistic), 85.21864, tolerance = stat_tol * emp_sca)
expect_equivalent(c(res$ci[1]), 0.001077723, tolerance = p_tol * emp_sca)
expect_equivalent(c(res$ci[2]), 0.001211191, tolerance = p_tol * emp_sca)
expect_equivalent(attributes(res$statistic)$df, 23, tolerance = df_tol)
set.seed(1234)
res <- invchisq(grid2ip.p, adjust = "empirical", R = grid2ip.ld, size = c(1000, 10000, 100000), threshold = c(0.10, 0.01))
out <- capture.output(print(res))
expect_equivalent(c(res$p), 0.001229988, tolerance = p_tol * emp_sca)
expect_equivalent(c(res$statistic), 85.21864, tolerance = stat_tol * emp_sca)
expect_equivalent(c(res$ci[1]), 0.001022341, tolerance = p_tol * emp_sca)
expect_equivalent(c(res$ci[2]), 0.001467375, tolerance = p_tol * emp_sca)
expect_equivalent(attributes(res$statistic)$df, 23, tolerance = df_tol)
})
test_that("invchisq() works correctly under multivariate theory.", {
res1 <- invchisq(grid2ip.p, adjust = "generalized", R = mvnconv(grid2ip.ld, side = 1))
out <- capture.output(print(res1))
expect_equivalent(c(res1$p), 2.044974e-05, tolerance = p_tol)
expect_equivalent(c(res1$statistic), 42.07063, tolerance = stat_tol)
expect_equivalent(attributes(res1$statistic)$df, 11.35461, tolerance = df_tol)
res2 <- invchisq(grid2ip.p, adjust = "generalized", R = mvnconv(grid2ip.ld, side = 2))
out <- capture.output(print(res2))
expect_equivalent(c(res2$p), 0.0003806222, tolerance = p_tol)
expect_equivalent(c(res2$statistic), 27.44923, tolerance = stat_tol)
expect_equivalent(attributes(res2$statistic)$df, 7.408383, tolerance = df_tol)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.