library(economiccomplexity)
library(dplyr)
library(igraph)
library(ggraph)
trade <- readRDS("~/github/economiccomplexity/dev/world_trade_avg_1998_to_2000.rds")
bi <- balassa_index(
data = trade,
country = "reporter_iso",
product = "product_code",
value = "trade_value_usd"
)
com_fit <- complexity_measures(balassa_index = bi)
pro <- proximity(
balassa_index = bi
)
net <- projections(
proximity_country = pro$proximity_country,
proximity_product = pro$proximity_product,
tolerance = 0.05
)
aggregated_products <- trade %>%
group_by(product_code) %>%
summarise(trade_value_usd = sum(trade_value_usd))
aggregated_products <- setNames(aggregated_products$trade_value_usd, aggregated_products$product_code)
V(net$network_product)$size <- aggregated_products[match(V(net$network_product)$name, names(aggregated_products))]
set.seed(200100)
g_products <- net$network_product %>%
ggraph(layout = "fr") +
# geom_edge_link(aes(edge_width = weight), edge_colour = "#a8a8a8") +
geom_edge_link(edge_colour = "#888888") +
geom_node_point(aes(size = size), color = "#86494d") +
# geom_node_text(aes(label = name), vjust = 2.2) +
ggtitle("Proximity Based Network Projection for Products") +
theme_void()
g_products
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.