library(wbstats)
library(rlang)
library(Matrix)
library(dplyr)
library(purrr)
reference_year <- 2000
# inflation <- purrr::map_df(
# 1998:2000,
# function(year) {
# tradestatistics::ots_inflation %>%
# dplyr::filter(
# !!sym("to") <= 2010,
# !!sym("to") > year
# ) %>%
# dplyr::summarise(
# conversion_factor = dplyr::last(cumprod(!!sym("conversion_factor")))
# ) %>%
# dplyr::mutate(
# year = year,
# conversion_year = 2010
# ) %>%
# dplyr::select(!!!rlang::syms(c("year", "conversion_year", "conversion_factor")))
# }
# )
inflation2 <- purrr::map_df(
2000,
function(year) {
tradestatistics::ots_inflation %>%
dplyr::filter(
!!sym("to") <= 2010,
!!sym("to") > year
) %>%
dplyr::summarise(
conversion_factor = dplyr::last(cumprod(!!sym("conversion_factor")))
) %>%
dplyr::mutate(
year = year,
conversion_year = 2010
) %>%
dplyr::select(!!!rlang::syms(c("year", "conversion_year", "conversion_factor")))
}
)
gdp <- wb(indicator = "NY.GDP.PCAP.KD", startdate = 1998, enddate = 2000)
gdp2 <- gdp %>%
select(year = date, iso3c, gdppc = value) %>%
mutate(year = as.integer(year), iso3c = tolower(iso3c)) %>%
mutate(gdppc = gdppc / inflation2$conversion_factor)
gdp2 <- gdp2 %>%
group_by(iso3c) %>%
summarise(gdppc = mean(gdppc, na.rm = T)) %>%
mutate(gdppc = round(gdppc, 0))
world_gdp_avg_1998_to_2000 <- gdp2
names(world_gdp_avg_1998_to_2000) <- c("country","value")
save(world_gdp_avg_1998_to_2000, file = 'data/world_gdp_avg_1998_to_2000.rda', compress = "xz")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.