# library(Matrix)
library(rlang)
library(dplyr)
library(tidyr)
library(purrr)
finp <- list.files(path = "dev/sitc-data", full.names = T)
reference_year <- 2000
inflation <- purrr::map_df(
1998:2000,
function(year) {
tradestatistics::ots_inflation %>%
dplyr::filter(
!!sym("to") <= reference_year,
!!sym("to") > year
) %>%
dplyr::summarise(
conversion_factor = dplyr::last(cumprod(!!sym("conversion_factor")))
) %>%
dplyr::mutate(
year = year,
conversion_year = reference_year
) %>%
dplyr::select(!!!rlang::syms(c("year", "conversion_year", "conversion_factor")))
}
)
inflation <- inflation %>% mutate(conversion_factor = ifelse(is.na(conversion_factor), 1, conversion_factor))
trade <- map_df(finp, readRDS)
trade <- trade %>%
filter(product_code_length == 4)
trade <- trade %>%
left_join(inflation) %>%
mutate(trade_value_usd = trade_value_usd * conversion_factor)
trade <- trade %>%
group_by(reporter_iso, product_code) %>%
summarise(trade_value_usd = mean(trade_value_usd, na.rm = T)) %>%
mutate(trade_value_usd = round(trade_value_usd, 0))
# world_trade_avg_1998_to_2000 <- trade %>%
# ungroup() %>%
# mutate_if(is.character, as.factor)
#
# world_trade_avg_1998_to_2000 <- with(
# world_trade_avg_1998_to_2000,
# sparseMatrix(
# i = as.numeric(reporter_iso),
# j = as.numeric(product_code),
# x = trade_value_usd,
# dimnames = list(levels(reporter_iso), levels(product_code))
# )
# )
world_trade_avg_1998_to_2000 <- trade
names(world_trade_avg_1998_to_2000) <- c("country", "product", "value")
world_trade_avg_1998_to_2000 <- world_trade_avg_1998_to_2000 %>%
ungroup()
save(world_trade_avg_1998_to_2000, file = 'data/world_trade_avg_1998_to_2000.rda', compress = "xz")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.