analytiskontodimas_2004: Analytis-Kontodimas model for fitting thermal performance...

View source: R/analytiskontodimas_2004.R

analytiskontodimas_2004R Documentation

Analytis-Kontodimas model for fitting thermal performance curves

Description

Analytis-Kontodimas model for fitting thermal performance curves

Usage

analytiskontodimas_2004(temp, a, tmin, tmax)

Arguments

temp

temperature in degrees centigrade

a

scale parameter defining the height of the curve

tmin

low temperature (ºC) at which rates become negative

tmax

high temperature (ºC) at which rates become negative

Details

Equation:

rate = a \cdot \left(T - T_{\text{min}}\right)^2 \cdot \left(T_{\text{max}} - T\right)

Start values in get_start_vals are derived from the data or sensible values from the literature.

Limits in get_lower_lims and get_upper_lims are based on extreme values that are unlikely to occur in ecological settings.

Value

a numeric vector of rate values based on the temperatures and parameter values provided to the function

Note

Generally we found this model easy to fit.

Author(s)

Francis Windram

References

Kontodimas, D. C., Eliopoulos, P. A., Stathas, G. J. & Economou, L. P. Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): evaluation of a linear and various nonlinear models using specific criteria. Environ. Entomol. 33, 1–11 (2004).

Examples

# load in ggplot
library(ggplot2)

# subset for the first TPC curve
data('chlorella_tpc')
d <- subset(chlorella_tpc, curve_id == 1)

# get start values and fit model
start_vals <- get_start_vals(d$temp, d$rate, model_name = 'analytiskontodimas_2004')
# fit model
mod <- nls.multstart::nls_multstart(rate~analytiskontodimas_2004(temp = temp, a, tmin, tmax),
data = d,
iter = 200,
start_lower = start_vals - 10,
start_upper = start_vals + 10,
lower = get_lower_lims(d$temp, d$rate, model_name = 'analytiskontodimas_2004'),
upper = get_upper_lims(d$temp, d$rate, model_name = 'analytiskontodimas_2004'),
supp_errors = 'Y',
convergence_count = FALSE)

# look at model fit
summary(mod)

# get predictions
preds <- data.frame(temp = seq(min(d$temp), max(d$temp), length.out = 100))
preds <- broom::augment(mod, newdata = preds)

# plot
ggplot(preds) +
geom_point(aes(temp, rate), d) +
geom_line(aes(temp, .fitted), col = 'blue') +
theme_bw()


padpadpadpad/rTPC documentation built on Feb. 21, 2025, 5:30 a.m.