Description Usage Arguments Value Author(s) References See Also Examples
This function allows to evaluate utility-based metrics in regression problems which have defined a cost, benefit, or utility surface.
1 2 3 |
trues |
A vector with the true target variable values of the problem. |
preds |
A vector with the prediction values obtained for the vector of trues. |
util.vals |
Either the cost, benefit or utility values corresponding to the provided points (trues, preds). |
type |
A character specifying the type of surface under consideration. Can be set to "cost", "benefit" or "utility" (the default). |
metrics |
A character vector with the metrics names to be evaluated. If not specified (the default), all the metrics avaliable for the type of surface provided are evaluated. |
thr |
A numeric value between 0 and 1 setting a threshold on the relevance values for determining which are the important cases to consider. This threshold is only necessary for the following metrics: precPhi, recPhi and FPhi. Moreover, these metrics are only available for problems based on utility surfaces. Defaults to 0.5. |
control.parms |
the control.parms of the relevance function phi. Can be obtained through function phi.control. These are only necessary for evaluating the following utility metrics: recPhi, precPhi and FPhi. |
beta |
The numeric value of the beta parameter for F-score. |
maxC |
the maximum cost achievable in the cost surface. Parameter only required when the problem depends on a cost surface. |
maxB |
the maximum Benefit achievable in the benefit surface. Parameter only required when the problem depends on a benefit surface. |
The function returns a named list with the evaluated metrics results.
Paula Branco paobranco@gmail.com, Rita Ribeiro rpribeiro@dcc.fc.up.pt and Luis Torgo ltorgo@dcc.fc.up.pt
Ribeiro, R., 2011. Utility-based regression (Doctoral dissertation, PhD thesis, Dep. Computer Science, Faculty of Sciences - University of Porto).
Branco, P., 2014. Re-sampling Approaches for Regression Tasks under Imbalanced Domains (Msc thesis, Dep. Computer Science, Faculty of Sciences - University of Porto).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | ## Not run:
#Example using a utility surface interpolated and observing the performance of
# two models: i) a model obtained with a strategy designed for maximizing
# predictions utility and a model obtained through a standard random Forest.
data(Boston, package = "MASS")
tgt <- which(colnames(Boston) == "medv")
sp <- sample(1:nrow(Boston), as.integer(0.7*nrow(Boston)))
train <- Boston[sp,]
test <- Boston[-sp,]
control.parms <- phi.control(Boston[,tgt], method="extremes", extr.type="both")
# the boundaries of the domain considered
minds <- min(train[,tgt])
maxds <- max(train[,tgt])
# build m.pts to include at least (minds, maxds) and (maxds, minds) points
# m.pts must only contain points in [minds, maxds] range.
m.pts <- matrix(c(minds, maxds, -1, maxds, minds, -1),
byrow=TRUE, ncol=3)
pred.res <- UtilOptimRegress(medv~., train, test, type = "util", strat = "interpol",
strat.parms=list(method = "bilinear"),
control.parms = control.parms,
m.pts = m.pts, minds = minds, maxds = maxds)
# assess the performance
eval.util <- EvalRegressMetrics(test$medv, pred.res$optim, pred.res$utilRes,
thr = 0.8, control.parms = control.parms)
# now train a normal model
model <- randomForest(medv~.,train)
normal.preds <- predict(model, test)
#obtain the utility of this model predictions
NormalUtil <- UtilInterpol(test$medv, normal.preds, type = "util",
control.parms = control.parms,
minds, maxds, m.pts, method = "bilinear")
#check the performance
eval.normal <- EvalRegressMetrics(test$medv, normal.preds, NormalUtil,
thr=0.8, control.parms = control.parms)
# 3 check visually the utility surface and the predictions of both models
UtilInterpol(NULL,NULL, type = "util", control.parms = control.parms,
minds, maxds, m.pts, method = "bilinear",
visual=TRUE, full.output = TRUE)
points(test$medv, normal.preds) # standard model predition points
points(test$medv, pred.res$optim, col="blue") # model with optimized predictions
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.