qbe_std: Detect queries in test items

Description Usage Arguments

View source: R/qbd_std.R

Description

Detect queries in test items

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
qbe_std(
  queries_loc,
  references_loc,
  names_fetcher = fetch_npz_names,
  features_fetcher = fetch_npz_item,
  search_mf_maker = create_allcomb_df,
  post_processor = create_qbestd_df,
  nndtw_func = sousrir_1nndtw,
  ssdtw_func = sousrir_ssdtw,
  progress_bar = TRUE,
  use_multisession = TRUE
)

Arguments

queries_loc

Location of queries (default: an npz file containing a named dictionary of NumPy feature matrices of shape TxF)

references_loc

Location of references (default: an npz file containing a named dictionary of NumPy feature matrices of shape TxF)

names_fetcher

A function that takes queries_loc/references_loc and returns the items contained in them (default: fetch_npz_names)

features_fetcher

A function that takes queries_loc/references_loc and an item name, and returns the features associated with that item (default: fetch_npz_item)

search_mf_maker

A function that takes the list of query and reference names and returns a two-column data frame with pairs of queries and references (default: create_allcomb_df)

post_processor

A function to process the search results (default: create_qbestd_df)

nndtw_func

A function to shortlist starting indices (default: sousrir_1nndtw)

ssdtw_func

A function to calculate a score of how likely a query occurs in a reference, given starting indices (default: sousrir_ssdtw)

progress_bar

Show progress bar while running search

use_multisession

Use future::multisession to run search using multiple R sessions in parallel


parledoct/sousrir documentation built on Dec. 22, 2021, 6:39 a.m.