Man pages for pat-s/2019-feature-selection
Research Compendium package for the publication "Monitoring forest health using hyperspectral imagery: Does feature selection improve the performance of machine-learning techniques?"

calc_nri_indicesCalculate Normalized Ratio Indices
calculate_vicalculate_vi
calc_veg_indicesCalculate vegetation indices
copy_cloudcopy_cloud
create_defoliation_mapwrite_defoliation_map
create_prediction_dfcreate_prediction_df
create_prediction_mapCreate spatial maps from the predicted data
data_preprocessingData preprocessing
downloadDownload data
download_imagesdownload_images
extract_to_plotExtract hyperspectral bands
extra_to_plotExtract indices
feature_imp_parallelParallel feature importance wrapper
FeatureSelection-packageFeatureSelection: Research Compendium package for the...
file_cp_tsCopy a file to a new location conditionally
get_coordinatesget_coordinates
get_recordsget_records
inv_boxcox_rmseReverse Boxcox transformation
mask_mosaicmask_mosaic
mask_vimask_vi
mosaic_cloudsmosaic_clouds
mosaic_imagesmosaic_images
my_pairsEDA functions from A. Brenning
predict_defoliationpredict_defoliation
prediction_rasterprediction_raster
process_hyperspecprocess_hyperspec
ras_to_sfras_to_sf
scale_defoliationwrite_defoliation_map
stack_bandsstack_bands
train_wrapperCreate a mlr train wrapper
tune_ctrl_mbo_30n_70itmlrMBO 30n 70 iterations tuning setting
tune_ctrl_wrapperCreate a mlr tune control object
tune_wrapperCreate a mlr tune wrapper
unzip_imagesdownload_images
pat-s/2019-feature-selection documentation built on Dec. 24, 2021, 8:40 a.m.