# Setup -------------------------------------------------------------------
rm(list = ls())
library(magrittr)
source("0_Input/6a_Exclusion_Functions.R")
rstudioapi::getActiveDocumentContext()$path %>%
dirname(.) %>%
dirname(.) %>%
setwd(.)
# Sanity checks -----------------------------------------------------------
# ## Function
#
# check <- function(age) {
#
# ref <-
# readRDS("0_Input/rds/vars.rds") %>%
# .[!is.na(.$accel_file), ] %>%
# .[.$age >= age,] %>%
# .[.$accel_valid, ]
#
# vars <- suppressMessages(
# load_and_reduce(
# criteria = c(
# "accel_exists", "age", "pregnancy",
# "chf", "chd", "angina", "mi", "stroke",
# "smoking", "cholesterol", "bp", "antihypertensive",
# "diabetes", "accel_invalid"
# ),
# age = age
# )
# )
#
# setequal(ref$id, vars$id)
#
# }
#
# ## Implementation
#
# check(25)
# check(30)
# Missing variable-by-variable (Supplemental Table 1) ---------------------
# load_and_reduce(criteria = c("accel_exists", "age"), age = 25) %>%
# merge(
# readRDS("0_Input/rds/demographic.rds")[ ,c("SEQN", "INDFMPIR")],
# by.x = "id", by.y = "SEQN"
# ) %>%
# PAutilities::df_reorder("INDFMPIR", "exam_pregnancy") %>%
# sapply(function(x) {
# sum(is.na(x)) %>%
# paste0(., " (", round(./length(x)*100), "%)")
# })
# Data loss in sequence ---------------------------------------------------
## NOTE: PCA outliers removed by a subsequent process -- these N's
## are therefore not final, but they are very close
# clustering <- load_and_reduce(
# criteria = c(
# "accel_exists", "age", "pregnancy", "accel_invalid"
# ), age = 25
# )
#
# epi <-
# load_and_reduce(age = 30) %T>%
# {stopifnot(all(.$id %in% clustering$id))}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.