create_data_df <- function(data, flux, air, tau) {
# Raw data
# Check whether the format is like cwall_east or like cwall_north
if ("T_in" %in% names(data)) {
Qin <- data[, "Q_in"]
Qout <- data[, "Q_out"]
Ti <- data[, "T_in"]
Te <- data[, "T_out"]
} else {
Qin <- data[, "Q_in"]
Qout <- data[, "Q_out"]
if (air) {
Ti <- data[, "TA_int"]
Te <- data[, "TA_ext"]
} else {
Ti <- data[, "TS_int"]
Te <- data[, "TS_ext"]
}
}
# Sample size
n <- nrow(data)
# Data for model
# Qin
Qinp <- Qin[2:n]
Qinp1 <- Qin[1:(n - 1)]
# Qout
Qoutp <- Qout[2:n]
Qoutp1 <- Qout[1:(n - 1)]
the_time <- data[2:n, "Time"]
# x1, x2, x3
x1 <- (Ti[2:n] + Ti[1:(n - 1)]) / 2 - (Te[2:n] + Te[1:(n - 1)]) / 2
x2 <- Ti[2:n] - Ti[1:(n - 1)]
x3 <- Te[2:n] - Te[1:(n - 1)]
# Deal with missing values
# Create a matrix of the data involved in the model
if (flux == "in") {
temp_data <- cbind(Qinp, x1, x2, Qinp1, the_time)
temp_data <- na.omit(temp_data)
Qinp <- temp_data[, "Qinp"]
x1 <- temp_data[, "x1"]
x2 <- temp_data[, "x2"]
the_time <- as.numeric(temp_data[, "the_time"])
Qinp1 <- temp_data[, "Qinp1"]
data_matrix <- cbind(Qinp, x1, x2, Qinp1, tau)
data_df <- data.frame(Qinp = Qinp, x1 = x1, x2 = x2, Qinp1 = Qinp1,
tau = tau, the_time = the_time)
} else if (flux == "out") {
temp_data <- cbind(Qoutp, x1, x3, Qoutp1, the_time)
temp_data <- na.omit(temp_data)
# Note the negation of the Qout values in the data file
Qoutp <- -temp_data[, "Qoutp"]
Qoutp1 <- -temp_data[, "Qoutp1"]
x1 <- temp_data[, "x1"]
x3 <- temp_data[, "x3"]
the_time <- as.numeric(temp_data[, "the_time"])
data_df <- data.frame(Qoutp = Qoutp, x1 = x1, x3 = -x3, Qoutp1 = Qoutp1,
tau = tau, the_time = the_time)
} else {
# temp_data <- cbind(Qinp, Qoutp, x1, x2, x3, Qinp1, Qoutp1, the_time)
temp_data <- data.frame(Qinp, Qoutp, x1, x2, x3, Qinp1, Qoutp1, the_time)
temp_data <- na.omit(temp_data)
Qinp <- temp_data[, "Qinp"]
Qinp1 <- temp_data[, "Qinp1"]
# Note the negation of the Qout values in the data file
Qoutp <- -temp_data[, "Qoutp"]
Qoutp1 <- -temp_data[, "Qoutp1"]
x1 <- temp_data[, "x1"]
x2 <- temp_data[, "x2"]
x3 <- temp_data[, "x3"]
# the_time <- factor(temp_data[, "the_time"])
# the_time <- as.numeric(temp_data[, "the_time"])
the_time <- temp_data[, "the_time"]
Qsp <- c(Qinp, Qoutp)
Qsp1 <- c(Qinp1, Qoutp1)
n <- nrow(temp_data)
in_out <- factor(c(rep("inside", n), rep("outside", n)))
zeros <- rep(0, n)
the_time <- c(the_time, the_time)
# class(the_time) <- c("ordered", "factor")
data_df <- data.frame(Qsp = Qsp, x1 = c(x1, x1), x23 = c(x2, -x3),
Qsp1 = Qsp1, in_out = in_out, tau = tau,
the_time = the_time)
# new_data_df <- nlme::groupedData(Qsp ~ 1 | the_time, data = data_df)
# print(head(new_data_df))
# data_df <- new_data_df
}
return(data_df)
}
two_tm_create_data_df <- function(data, air, tau) {
# Raw data
# Check whether the format is like cwall_east or like cwall_north
if ("T_in" %in% names(data)) {
Qin <- data[, "Q_in"]
Qout <- data[, "Q_out"]
Ti <- data[, "T_in"]
Te <- data[, "T_out"]
} else {
Qin <- data[, "Q_in"]
Qout <- data[, "Q_out"]
if (air) {
Ti <- data[, "TA_int"]
Te <- data[, "TA_ext"]
} else {
Ti <- data[, "TS_int"]
Te <- data[, "TS_ext"]
}
}
# Sample size
n <- nrow(data)
# Data for model
# Qin
Qinp <- Qin[2:n]
Qinp1 <- Qin[1:(n - 1)]
# Qout
Qoutp <- Qout[2:n]
Qoutp1 <- Qout[1:(n - 1)]
the_time <- data[2:n, "Time"]
# x1, x2, x3
x1 <- (Ti[2:n] + Ti[1:(n - 1)]) / 2 - (Te[2:n] + Te[1:(n - 1)]) / 2
x2 <- Ti[2:n] - Ti[1:(n - 1)]
x3 <- Te[2:n] - Te[1:(n - 1)]
# Deal with missing values
# Create a matrix of the data involved in the model
# temp_data <- cbind(Qinp, Qoutp, x1, x2, x3, Qinp1, Qoutp1, the_time)
temp_data <- data.frame(Qinp, Qoutp, x1, x2, x3, Qinp1, Qoutp1, the_time)
temp_data <- na.omit(temp_data)
Qinp <- temp_data[, "Qinp"]
Qinp1 <- temp_data[, "Qinp1"]
# Note the negation of the Qout values in the data file
Qoutp <- -temp_data[, "Qoutp"]
Qoutp1 <- -temp_data[, "Qoutp1"]
x1 <- temp_data[, "x1"]
x2 <- temp_data[, "x2"]
x3 <- temp_data[, "x3"]
# the_time <- factor(temp_data[, "the_time"])
# the_time <- as.numeric(temp_data[, "the_time"])
the_time <- temp_data[, "the_time"]
Qp <- c(Qinp, Qoutp)
Qp1 <- c(Qinp1, Qoutp1)
n <- nrow(temp_data)
in_out <- factor(c(rep("inside", n), rep("outside", n)))
zeros <- rep(0, n)
the_time <- c(the_time, the_time)
# class(the_time) <- c("ordered", "factor")
data_df <- data.frame(Qp = Qp, x1 = c(x1, x1), x2 = c(x2, x2),
x3 = c(x3, x3), Qp1 = Qp1, in_out = in_out,
tau = tau, the_time = the_time)
return(data_df)
}
one_tm_sun_create_data_df <- function(data, air, tau) {
# Raw data
# Check that Q_sun is present
if (!("Q_sun" %in% names(data))) {
stop("data must contain the variable Q_sun")
}
# Check whether the format is like cwall_east or like cwall_north
if ("T_in" %in% names(data)) {
Qin <- data[, "Q_in"]
Qout <- data[, "Q_out"]
Ti <- data[, "T_in"]
Te <- data[, "T_out"]
} else {
Qin <- data[, "Q_in"]
Qout <- data[, "Q_out"]
if (air) {
Ti <- data[, "TA_int"]
Te <- data[, "TA_ext"]
} else {
Ti <- data[, "TS_int"]
Te <- data[, "TS_ext"]
}
}
# Sample size
n <- nrow(data)
# Data for model
# Qin
Qinp <- Qin[2:n]
Qinp1 <- Qin[1:(n - 1)]
# Qout
Qoutp <- Qout[2:n]
Qoutp1 <- Qout[1:(n - 1)]
the_time <- data[2:n, "Time"]
# x1, x2, x3
x1 <- (Ti[2:n] + Ti[1:(n - 1)]) / 2 - (Te[2:n] + Te[1:(n - 1)]) / 2
x2 <- Ti[2:n] - Ti[1:(n - 1)]
x3 <- Te[2:n] - Te[1:(n - 1)]
# x4, x5 (mean of Qsunp and Qsunp1, Qsunp - Qsunp1)
Qsunp <- data[2:n, "Q_sun"]
Qsunp1 <- data[1:(n - 1), "Q_sun"]
x4 <- (Qsunp + Qsunp1) / 2
x5 <- Qsunp - Qsunp1
# Deal with missing values
# Create a matrix of the data involved in the model
# temp_data <- cbind(Qinp, Qoutp, x1, x2, x3, x4, x5, Qinp1, Qoutp1, the_time)
temp_data <- data.frame(Qinp, Qoutp, x1, x2, x3, x4, x5, Qinp1, Qoutp1,
the_time)
temp_data <- na.omit(temp_data)
Qinp <- temp_data[, "Qinp"]
Qinp1 <- temp_data[, "Qinp1"]
# Note the negation of the Qout values in the data file
Qoutp <- -temp_data[, "Qoutp"]
Qoutp1 <- -temp_data[, "Qoutp1"]
x1 <- temp_data[, "x1"]
x2 <- temp_data[, "x2"]
x3 <- temp_data[, "x3"]
x4 <- temp_data[, "x4"]
x5 <- temp_data[, "x5"]
# the_time <- factor(temp_data[, "the_time"])
# the_time <- as.numeric(temp_data[, "the_time"])
the_time <- temp_data[, "the_time"]
Qp <- c(Qinp, Qoutp)
Qp1 <- c(Qinp1, Qoutp1)
n <- nrow(temp_data)
in_out <- factor(c(rep("inside", n), rep("outside", n)))
zeros <- rep(0, n)
the_time <- c(the_time, the_time)
# class(the_time) <- c("ordered", "factor")
data_df <- data.frame(Qp = Qp, x1 = c(x1, x1), x2 = c(x2, x2),
x3 = c(x3, x3), x4 = c(x4, x4), x5 = c(x5, x5),
Qp1 = Qp1, in_out = in_out, tau = tau,
the_time = the_time)
return(data_df)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.