Description Usage Arguments Details Value Examples
Train model Random Forest for the top-N variables N = 5,10,15,20,30,40,50,75,100
1 | model.result.top.var(x, y, list.selected.var, list.index.cross)
|
x |
input data where columns are variables and rows are observations (all numeric) |
y |
decision variable as a boolean vector of length equal to number of observations |
list.selected.var |
A |
list.index.cross |
A |
Train model Random Forest in cross-validation and variables selected in the cross-validation for the top-N variables N = 5,10,15,20,30,40,50,75,100
A data.frame
with metrics Accuracy, AUC, MCC for the top-N variables N = 5,10,15,20,30,40,50,75,100
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | class <- data$class
data$class <- NULL
list.index.cross <- cross.validation(x = data, y = class, method= 'cv.kfold', k = 3, niter = 10)
list.selected.var <- feature.selection(x = data,
y = class,
method = 'fs.utest',
list.index.cross = indexes,
params = list(adjust = 'holm'))
model.result <- model.result.top.var(x = data,
y = class,
list.selected.var = list.selected.var,
list.index.cross = list.index.cross)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.