##################################################################################
# Code for the paper
# "NCC: An R-package for analysis and simulation of platform trials with non-concurrent controls" by Pavla Krotka et al. (2023)
# Example 2 - Section 4
##################################################################################
library(NCC)
library(ggplot2)
# lambda_values <- rep(seq(-0.15, 0.15, length.out = 9), 2)
# sim_scenarios <- data.frame(num_arms = 4,
# n_arm = 250,
# d1 = 250*0,
# d2 = 250*1,
# d3 = 250*2,
# d4 = 250*3,
# period_blocks = 2,
# mu0 = 0,
# sigma = 1,
# theta1 = 0,
# theta2 = 0,
# theta3 = 0,
# theta4 = 0,
# lambda0 = lambda_values,
# lambda1 = lambda_values,
# lambda2 = lambda_values,
# lambda3 = lambda_values,
# lambda4 = lambda_values,
# trend = c(rep("linear", 9), rep("stepwise_2", 9)),
# alpha = 0.025,
# ncc = TRUE)
#
# head(sim_scenarios)
#
# set.seed(1234)
# sim_results <- sim_study_par(nsim = 1000, scenarios = sim_scenarios, arms = 4,
# models = c("fixmodel", "sepmodel", "poolmodel"), endpoint = "cont")
#
# head(sim_results)
#
# ggplot(sim_results, aes(x=lambda0, y=reject_h0, color=model)) +
# geom_point() +
# geom_line() +
# facet_grid(~ trend) +
# geom_hline(aes(yintercept = 0.025), linetype = "dotted") +
# labs(x="Strength of time trend", y="Type I error", color="Analysis approach") +
# theme_bw()
# #ggsave("t1e.png", width = 7, height = 5)
#
# ggplot(sim_results, aes(x=lambda0, y=bias, color=model)) +
# geom_point() +
# geom_line() +
# facet_grid(~ trend) +
# geom_hline(aes(yintercept = 0), linetype = "dotted") +
# labs(x="Strength of time trend", y="Bias", color="Analysis approach") +
# theme_bw()
# #ggsave("bias.png", width = 7, height = 5)
#
# ggplot(sim_results, aes(x=lambda0, y=MSE, color=model)) +
# geom_point() +
# geom_line() +
# facet_grid(~ trend) +
# labs(x="Strength of time trend", y="MSE", color="Analysis approach") +
# theme_bw()
# #ggsave("mse.png", width = 7, height = 5)
##################################################################################
# Binary case:
lambda_values <- rep(seq(-0.5, 0.5, length.out = 9), 2)
sim_scenarios <- data.frame(num_arms = 4,
n_arm = 250,
d1 = 250*0,
d2 = 250*1,
d3 = 250*2,
d4 = 250*3,
period_blocks = 2,
p0 = 0.7,
OR1 = 1,
OR2 = 1,
OR3 = 1,
OR4 = 1,
lambda0 = lambda_values,
lambda1 = lambda_values,
lambda2 = lambda_values,
lambda3 = lambda_values,
lambda4 = lambda_values,
trend = c(rep("linear", 9), rep("stepwise_2", 9)),
alpha = 0.025,
ncc = TRUE)
head(sim_scenarios)
set.seed(1234)
sim_results <- sim_study_par(nsim = 1000, scenarios = sim_scenarios, arms = 4,
models = c("fixmodel", "sepmodel", "poolmodel"), endpoint = "bin")
head(sim_results)
ggplot(sim_results, aes(x=lambda0, y=reject_h0, color=model)) +
geom_point() +
geom_line() +
facet_grid(~ trend) +
geom_hline(aes(yintercept = 0.025), linetype = "dotted") +
labs(x="Strength of time trend", y="Type I error", color="Analysis approach") +
theme_bw()
#ggsave("t1e.png", width = 7, height = 5)
ggplot(sim_results, aes(x=lambda0, y=bias, color=model)) +
geom_point() +
geom_line() +
facet_grid(~ trend) +
geom_hline(aes(yintercept = 0), linetype = "dotted") +
labs(x="Strength of time trend", y="Bias", color="Analysis approach") +
theme_bw()
#ggsave("bias.png", width = 7, height = 5)
ggplot(sim_results, aes(x=lambda0, y=MSE, color=model)) +
geom_point() +
geom_line() +
facet_grid(~ trend) +
labs(x="Strength of time trend", y="MSE", color="Analysis approach") +
theme_bw()
#ggsave("mse.png", width = 7, height = 5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.