context("Mu-Dir Bayes factors - basic checks")
test_that("test1", {
expect_equal(
round(
bf_multinomial(data = austria_bl1, categories = c(1:9), null_par = theta_benford(1)),
3),
0.001)
})
test_that("log10 BF", {
expect_equal(
round(
log10(
bf_multinomial(data = austria_bl1, categories = c(1:9), null_par = theta_benford(1))
),
3),
-3.098)
})
test_that("log BF", {
expect_equal(
round(
log(
bf_multinomial(data = austria_bl1, categories = c(1:9), null_par = theta_benford(1))
),
3),
-7.133)
})
test_that("BF strength of evidence", {
expect_equal(
bfactor_interpret(
bf_multinomial(data = austria_bl1, categories = c(1:9), null_par = theta_benford(1))
),
"Negative"
)
})
context("Mu-Dir BL1 - Bayes factors and posterior probabilities")
test_that("log10(BF), uniform prior", {
expect_equal(
round(
log10(
sapply(
X = datalist_bl1,
FUN = bf_multinomial,
categories = 1:9,
null_par = theta_benford(1),
hyper_par = rep(1, 9)
)
),
2),
c(-3.10, -1.78, 1.06, -1.40, 1.21, 0.89, -2.37, 1.23, -8.88, 3.81, -8.38, 0.62)
)
})
test_that("PPs, uniform prior", {
expect_equal(
round(
as.numeric(
mapply(
FUN = pcal::bfactor_to_prob,
bf = sapply(
X = datalist_bl1,
FUN = bf_multinomial,
categories = 1:9,
null_par = theta_benford(1),
hyper_par = rep(1, 9))
)
),
3),
c(0.001, 0.016, 0.919, 0.039, 0.942, 0.885, 0.004, 0.945, 0.000, 1.000, 0.000, 0.808)
)
})
test_that("log10(BF), centred Dir prior c=1", {
expect_equal(
round(
log10(
sapply(
X = datalist_bl1,
FUN = bf_multinomial,
categories = 1:9,
null_par = theta_benford(1),
hyper_par = theta_benford(1)
)
),
2),
c(1.93, 3.35, 6.47, 4.02, 6.14, 5.87, 2.48, 6.12, -4.33, 8.98, -3.61, 5.19)
)
})
test_that("PPs, centred Dir prior c=1", {
expect_equal(
round(
as.numeric(
mapply(
FUN = pcal::bfactor_to_prob,
bf = sapply(
X = datalist_bl1,
FUN = bf_multinomial,
categories = 1:9,
null_par = theta_benford(1),
hyper_par = theta_benford(1)
)
)
),
3),
c(0.988, 1.000, 1.000, 1.000, 1.000, 1.000, 0.997, 1.000, 0.000, 1.000, 0.000, 1.000)
)
})
test_that("log10(BF), centred Dir prior c=22", {
expect_equal(
round(
log10(
sapply(
X = datalist_bl1,
FUN = bf_multinomial,
categories = 1:9,
null_par = theta_benford(1),
hyper_par = 22 * theta_benford(1)
)
),
2),
c(-4.92, -3.59, -0.60, -2.93, -0.89, -1.14, -4.43, -0.91, -10.95, 1.86, -10.29, -1.75)
)
})
test_that("PPs, centred Dir prior c=22", {
expect_equal(
round(
as.numeric(
mapply(
FUN = pcal::bfactor_to_prob,
bf = sapply(
X = datalist_bl1,
FUN = bf_multinomial,
categories = 1:9,
null_par = theta_benford(1),
hyper_par = 22 * theta_benford(1)
)
)
),
3),
c(0.000, 0.000, 0.200, 0.001, 0.113, 0.067, 0.000, 0.110, 0.000, 0.986, 0.000,0.018)
)
})
context("Mu-Dir BL2 - Bayes factors and posterior probabilities")
test_that("log10(BF), uniform prior", {
expect_equal(
round(
log10(
sapply(
X = datalist_bl2,
FUN = bf_multinomial,
categories = 0:9,
null_par = theta_benford(2),
hyper_par = rep(1, 10))
),
2),
c(5.05, 5.90, 4.79, 3.51, 5.78, 4.19, 6.34, 5.12, 3.39, 4.89, 5.76, 7.13)
)
})
test_that("PPs, uniform prior", {
expect_equal(
round(
as.numeric(
mapply(
FUN = pcal::bfactor_to_prob,
bf = sapply(
X = datalist_bl2,
FUN = bf_multinomial,
categories = 0:9,
null_par = theta_benford(2),
hyper_par = rep(1, 10)
)
)
),
3),
c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
})
test_that("log10(BF), centred Dir prior c=1", {
expect_equal(
round(
log10(
sapply(
X = datalist_bl2,
FUN = bf_multinomial,
categories = 0:9,
null_par = theta_benford(2),
hyper_par = theta_benford(2)
)
),
2),
c(11.27, 12.20, 11.11, 9.74, 12.03, 10.44, 12.64, 11.39, 9.61, 11.13, 11.99, 13.39)
)
})
test_that("PPs, centred Dir prior c=1", {
expect_equal(
round(
as.numeric(
mapply(
FUN = pcal::bfactor_to_prob,
bf = sapply(
X = datalist_bl2,
FUN = bf_multinomial,
categories = 0:9,
null_par = theta_benford(2),
hyper_par = theta_benford(2)
)
)
),
3),
c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
})
test_that("log10(BF), centred Dir prior c=12", {
expect_equal(
round(
log10(
sapply(
X = datalist_bl2,
FUN = bf_multinomial,
categories = 0:9,
null_par = theta_benford(2),
hyper_par = 12 * theta_benford(2)
)
),
2),
c(4.60, 5.52, 4.45, 3.10, 5.35, 3.79, 5.95, 4.72, 2.98, 4.47, 5.31, 6.69
)
)
})
test_that("PPs, centred Dir prior c=12", {
expect_equal(
round(
as.numeric(
mapply(
FUN = pcal::bfactor_to_prob,
bf = sapply(
X = datalist_bl2,
FUN = bf_multinomial,
categories = 0:9,
null_par = theta_benford(2),
hyper_par = 12 * theta_benford(2)
)
)
),
3),
c(1.000, 1.000, 1.000, 0.999, 1.000, 1.000, 1.000, 1.000, 0.999, 1.000, 1.000, 1.000)
)
})
context("Mu-Dir - test in_favor H1")
test_that("Mu-Dir - BF in_favor H1, test 1", {
expect_equal(
round(
log10(
sapply(
X = datalist_bl1,
FUN = bf_multinomial,
categories = 1:9,
null_par = theta_benford(1),
hyper_par = rep(1, 9),
in_favour = "H0"
)
),
2),
round(
log10(
1/sapply(
X = datalist_bl1,
FUN = bf_multinomial,
categories = 1:9,
null_par = theta_benford(1),
hyper_par = rep(1, 9),
in_favour = "H1"
)
),
2)
)
})
test_that("Mu-Dir - BF in_favor H1, test 2", {
expect_equal(
round(
log10(
1/sapply(
X = datalist_bl1,
FUN = bf_multinomial,
categories = 1:9,
null_par = theta_benford(1),
hyper_par = rep(1, 9),
in_favour = "H0"
)
),
2),
round(
log10(
sapply(
X = datalist_bl1,
FUN = bf_multinomial,
categories = 1:9,
null_par = theta_benford(1),
hyper_par = rep(1, 9),
in_favour = "H1"
)
),
2)
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.