tune.rfspav: Tune rfspav model (select best parameters)

Description Usage Arguments Details Value Examples

View source: R/!depreceated/tune.sfspav.r

Description

Do cross-validation procedured for tuning meta-parameters

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
tune.rfspav(
  formula,
  data_resample,
  coord_names,
  param_grid,
  metric = c("rmse", "rsq"),
  type = c("rf", "rfsp", "rfsi", "rfsig"),
  progress = TRUE,
  cpus = 1,
  importance = "impurity",
  gower_vars = NA,
  clust_style = c("sd", "equal", "pretty", "quantile", "kmeans", "hclust"),
  num_class = 10,
  feature_select = FALSE,
  data_crs = NA,
  ...
)

Arguments

formula

formula

data_resample

'rsample' folds

coord_names

PARAM_DESCRIPTION

param_grid

grid of four meta-parameters: neighbors, mtry, trees, min.node,size.

metric

Regression metrics, Default: c("rmse", "rsq")

type

Type of Random Forest Spatial Variants, Default: c("rf", "rfsp", "rfsi", "rfsig")

progress

PARAM_DESCRIPTION, Default: TRUE

cpus

Number of cores, Default: 1

importance

Variable importance, Default: 'impurity'

gower_vars

Variable used of gower-distance calculation, Default: NA

clust_style

Type of methods for choosing univariate class intervals of target variables (only for "rfsp" approach), Default: c("sd", "equal", "pretty", "quantile", "kmeans", "hclust")

num_class

Number of class intervals, Default: 10

feature_select

Should Feature Selection algorithm be applied (only for "rfsig" approach), Default: FALSE

data_crs

Data CRS, Default: NA

...

Additional parameters for 'ranger' Random Forest

Details

DETAILS

Value

Tuning list

Examples

1
2
3
4
5
6
## Not run: 
if(interactive()){
 #EXAMPLE1
 }

## End(Not run)

pejovic/rfspav documentation built on Feb. 18, 2022, 3:44 a.m.