Description Usage Arguments Details Value Examples
View source: R/!depreceated/tune.sfspav.r
Do cross-validation procedured for tuning meta-parameters
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | tune.rfspav(
formula,
data_resample,
coord_names,
param_grid,
metric = c("rmse", "rsq"),
type = c("rf", "rfsp", "rfsi", "rfsig"),
progress = TRUE,
cpus = 1,
importance = "impurity",
gower_vars = NA,
clust_style = c("sd", "equal", "pretty", "quantile", "kmeans", "hclust"),
num_class = 10,
feature_select = FALSE,
data_crs = NA,
...
)
|
formula |
formula |
data_resample |
'rsample' folds |
coord_names |
PARAM_DESCRIPTION |
param_grid |
grid of four meta-parameters: neighbors, mtry, trees, min.node,size. |
metric |
Regression metrics, Default: c("rmse", "rsq") |
type |
Type of Random Forest Spatial Variants, Default: c("rf", "rfsp", "rfsi", "rfsig") |
progress |
PARAM_DESCRIPTION, Default: TRUE |
cpus |
Number of cores, Default: 1 |
importance |
Variable importance, Default: 'impurity' |
gower_vars |
Variable used of gower-distance calculation, Default: NA |
clust_style |
Type of methods for choosing univariate class intervals of target variables (only for "rfsp" approach), Default: c("sd", "equal", "pretty", "quantile", "kmeans", "hclust") |
num_class |
Number of class intervals, Default: 10 |
feature_select |
Should Feature Selection algorithm be applied (only for "rfsig" approach), Default: FALSE |
data_crs |
Data CRS, Default: NA |
... |
Additional parameters for 'ranger' Random Forest |
DETAILS
Tuning list
1 2 3 4 5 6 | ## Not run:
if(interactive()){
#EXAMPLE1
}
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.