#' Centering numeric data to a value besides their mean
#'
#' `step_center_to` generalizes `step_center` to allow for a different function
#' than the `mean` function to calculate centers. It creates a *specification*
#' of a recipe step that will normalize numeric data to have a 'center' of zero.
#'
#' @param recipe A recipe object. The step will be added to the sequence of
#' operations for this recipe.
#' @param ... One or more selector functions to choose which variables are
#' affected by the step. See [selections()] for more details. For the `tidy`
#' method, these are not currently used.
#' @param role Not used by this step since no new variables are created.
#' @param trained A logical to indicate if the quantities for preprocessing have
#' been estimated.
#' @param centers A named numeric vector of centers. This is `NULL` until
#' computed by [prep.recipe()] (or it can be specified as a named
#' numeric vector as well?).
#' @param na_rm A logical value indicating whether `NA` values should be removed
#' during computations.
#' @param skip A logical. Should the step be skipped when the recipe is baked by
#' [bake.recipe()]? While all operations are baked when [prep.recipe()] is
#' run, some operations may not be able to be conducted on new data (e.g.
#' processing the outcome variable(s)). Care should be taken when using `skip
#' = TRUE` as it may affect the computations for subsequent operations
#' @param id A character string that is unique to this step to identify it.
#' @param center_fn a function to be used to calculate where the center should be
#'
#' @return An updated version of `recipe` with the new step added to the
#' sequence of existing steps (if any). For the `tidy` method, a tibble with
#' columns `terms` (the selectors or variables selected) and `value` (the
#' centers).
#'
#' @import recipes
#' @importFrom dplyr as_tibble
#'
#' @keywords datagen
#' @concept preprocessing
#' @concept normalization_methods
#' @export
#' @details Centering data means that the average of a variable is subtracted
#' from the data. `step_center_to` estimates the variable centers from the
#' data used in the `training` argument of `prep.recipe`. `bake.recipe` then
#' applies the centering to new data sets using these centers.
#'
#' @examples
#' data(biomass, package = "modeldata")
#'
#' biomass_tr <- biomass[biomass$dataset == "Training",]
#' biomass_te <- biomass[biomass$dataset == "Testing",]
#'
#' rec <- recipes::recipe(
#' HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#' data = biomass_tr)
#'
#' center_trans <- rec %>%
#' step_center_to(carbon, contains("gen"), -hydrogen)
#'
#' center_obj <- recipes::prep(center_trans, training = biomass_tr)
#'
#' transformed_te <- recipes::bake(center_obj, biomass_te)
#'
#' biomass_te[1:10, names(transformed_te)]
#' transformed_te
#'
#' recipes::tidy(center_trans)
#' recipes::tidy(center_obj)
#' @seealso [recipe()] [prep.recipe()] [bake.recipe()]
step_center_to <-
function(recipe,
...,
role = NA,
trained = FALSE,
centers = NULL,
center_fn = mean,
na_rm = TRUE,
skip = FALSE,
id = rand_id("center_to")) {
add_step(
recipe,
step_center_to_new(
terms = ellipse_check(...),
trained = trained,
role = role,
centers = centers,
center_fn = center_fn,
na_rm = na_rm,
skip = skip,
id = id
)
)
}
## Initializes a new object
step_center_to_new <-
function(terms, role, trained, centers, center_fn, na_rm, skip, id) {
step(
subclass = "center_to",
terms = terms,
role = role,
trained = trained,
centers = centers,
center_fn = center_fn,
na_rm = na_rm,
skip = skip,
id = id
)
}
#' @method prep step_center_to
#' @export
#'
prep.step_center_to <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info = info)
check_type(training[, col_names])
if(is.null(x$centers)) {
centers <-
vapply(training[, col_names], x$center_fn, c(center = 0), na.rm = x$na_rm)
attr(centers, "custom") <- FALSE
} else
centers <- x$centers
step_center_to_new(
terms = x$terms,
role = x$role,
trained = TRUE,
centers = centers,
center_fn = x$center_fn,
na_rm = x$na_rm,
skip = x$skip,
id = x$id
)
}
#' @method bake step_center_to
#' @export
bake.step_center_to <- function(object, new_data, ...) {
res <-
sweep(as.matrix(new_data[, names(object$centers)]), 2, object$centers, "-")
if (is.matrix(res) && ncol(res) == 1)
res <- res[, 1]
new_data[, names(object$centers)] <- res
as_tibble(new_data)
}
#' @method print step_center_to
#' @export
print.step_center_to <-
function(x, width = max(20, options()$width - 30), ...) {
custom <- length(attr(x$centers, "custom")) && attr(x$centers, "custom") |
length(attr(x$center_fn, "custom")) && attr(x$center_fn, "custom")
if(custom)
cat("Centering to custom value for ", sep = "")
else
cat("Centering to mean for ", sep = "")
printer(names(x$centers), x$terms, x$trained, width = width)
invisible(x)
}
#' @rdname step_center_to
#' @param x A `step_center_to` object.
#' @method tidy step_center_to
#' @importFrom rlang na_dbl
#' @export
tidy.step_center_to <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(terms = names(x$centers),
value = x$centers)
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names,
value = na_dbl)
}
res$id <- x$id
res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.