context("sparseR formula specification")
skip_on_cran() # takes awhile, so only test on GitHub
data(iris)
iris <- iris[1:50,]
# Add another unbalanced factor
iris$Group <- factor(sample(c('A', 'B'), nrow(iris), replace = TRUE))
# Add a nzv variable
iris$NotUseful <- 2
# Add a binary variable
iris$BV <- rbinom(nrow(iris), 1, prob = .5)
# Add an unbalanced binary variable
iris$UBV <- rbinom(nrow(iris), 1, prob = .02)
# Add missing continuous data
iris$Sepal.Length[5] <- NA
# Add missing factor data
iris$Group[2] <- NA
# Add missing binary data
iris$BV[12] <- NA
set.seed(123)
test_that("Different vals of k and poly work, general formula", {
expect_silent({
obj1 <- sparseR(Sepal.Width ~ ., data = iris)
obj2 <- sparseR(Sepal.Width ~ ., data = iris, k = 2, poly = 2)
obj3 <- sparseR(Sepal.Width ~ ., data = iris, k = 1, poly = 1)
obj4 <- sparseR(Sepal.Width ~ ., data = iris, k = 0, poly = 2)
})
expect_error(sparseR(Sepal.Width ~ ., data = iris, k = 1, poly = 0))
expect_error(sparseR(Sepal.Width ~ ., data = iris, k = 1, poly = NULL))
expect_error(sparseR(Sepal.Width ~ ., data = iris, k = 1, poly = 0))
expect_error(sparseR(Sepal.Width ~ ., data = iris, k = NULL, poly = NULL))
})
test_that("Different vals of k and poly work, specific formulae", {
formula <- Sepal.Width ~ Petal.Width + BV + Petal.Length + Group
expect_silent({
obj1 <- sparseR(formula, data = iris)
obj2 <- sparseR(formula, data = iris, k = 2, poly = 2)
obj3 <- sparseR(formula, data = iris, k = 1, poly = 1)
obj4 <- sparseR(formula, data = iris, k = 0, poly = 2)
})
formula <- Sepal.Width ~ BV + UBV + Group
expect_silent({
obj1 <- sparseR(formula, data = iris)
obj2 <- sparseR(formula, data = iris, k = 2, poly = 2)
obj3 <- sparseR(formula, data = iris, k = 1, poly = 1)
obj4 <- sparseR(formula, data = iris, k = 0, poly = 2)
obj5 <- sparseR(formula, data = iris, k = 5, poly = 5)
})
formula <- Sepal.Width ~ BV + UBV
expect_warning({
obj1 <- sparseR(formula, data = iris)
obj2 <- sparseR(formula, data = iris, k = 2, poly = 2)
obj3 <- sparseR(formula, data = iris, k = 1, poly = 1)
obj4 <- sparseR(formula, data = iris, k = 0, poly = 2)
})
})
## Test Detrano use-case
data("Detrano")
# Quicken compute time
cleveland <- cleveland[1:50,]
cleveland$thal <- factor(cleveland$thal)
cleveland$case <- 1*(cleveland$num > 0)
cleveland$num <- NULL
# Convert variables into factor variables if necessary!
cleveland$sex <- factor(cleveland$sex)
cleveland$fbs <- factor(cleveland$fbs)
cleveland$exang <- factor(cleveland$exang)
# Simulate missing data
cleveland$thal[2] <- cleveland$thalach[1] <- NA
test_that("Different vals of k and poly work, cleveland", {
expect_silent({
obj1 <- sparseR(case ~ ., data = cleveland)
})
expect_silent({
obj2 <- sparseR(case ~ ., data = cleveland, k = 2, poly = 2)
})
expect_silent({
obj3 <- sparseR(case ~ ., data = cleveland, k = 1, poly = 1)
})
expect_silent({
obj4 <- sparseR(case ~ ., data = cleveland, k = 0, poly = 2)
})
})
test_that("Different vals of k and poly work, specific formulae, cleveland", {
formula <- case ~ trestbps + cp + thalach + thal
expect_silent({
obj1 <- sparseR(formula, data = cleveland)
obj2 <- sparseR(formula, data = cleveland, k = 2, poly = 2)
obj3 <- sparseR(formula, data = cleveland, k = 1, poly = 1)
obj4 <- sparseR(formula, data = cleveland, k = 0, poly = 2, family = "binomial")
obj5 <- sparseR(formula, data = cleveland, k = 5, poly = 5)
})
formula <- case ~ thal + cp + chol
expect_silent({
obj1 <- sparseR(formula, data = cleveland)
obj2 <- sparseR(formula, data = cleveland, k = 2, poly = 2)
obj3 <- sparseR(formula, data = cleveland, k = 1, poly = 1)
obj4 <- sparseR(formula, data = cleveland, k = 0, poly = 2, family = "binomial")
})
formula <- case ~ sex + thal
expect_silent({
obj1 <- sparseR(formula, data = cleveland)
obj2 <- sparseR(formula, data = cleveland, k = 2, poly = 2)
obj3 <- sparseR(formula, data = cleveland, k = 1, poly = 1)
obj4 <- sparseR(formula, data = cleveland, k = 0, poly = 2, family = "binomial")
})
})
test_that("Detrano lasso functionality", {
expect_silent(SRL <- sparseR(formula = case ~ ., data = cleveland))
expect_silent(APL <- sparseR(formula = case ~ ., data = cleveland, gamma = 0))
expect_silent(MEM <- sparseR(formula = case ~ ., data = cleveland, k = 0, family = "binomial"))
expect_silent(SRLp <- sparseR(formula = case ~ ., data = cleveland, poly = 2))
formula <- case ~ sex + thal
expect_silent(sparseR(formula, data = cleveland))
expect_silent(sparseR(formula, data = cleveland, gamma = 0))
expect_silent(sparseR(formula, data = cleveland, k = 0, family = "binomial"))
expect_silent(sparseR(formula, data = cleveland, poly = 2))
expect_equal(nrow(predict(SRL, type = "coef")), nrow(SRL$fit$fit$beta))
expect_equal(nrow(predict(APL, type = "coef")), nrow(SRL$fit$fit$beta))
expect_equal(nrow(predict(MEM, type = "coef")), nrow(MEM$fit$fit$beta))
expect_equal(nrow(predict(SRLp, type = "coef")), nrow(SRLp$fit$fit$beta))
expect_equal(length(coef(SRL)), nrow(SRL$fit$fit$beta))
expect_equal(length(coef(APL)), nrow(SRL$fit$fit$beta))
expect_equal(length(coef(MEM)), nrow(MEM$fit$fit$beta))
expect_equal(length(coef(SRLp)), nrow(SRLp$fit$fit$beta))
expect_equal(nrow(predict(SRL, at = "cv1se", type = "coef")), nrow(SRL$fit$fit$beta))
expect_equal(nrow(predict(APL, at = "cv1se", type = "coef")), nrow(SRL$fit$fit$beta))
expect_equal(nrow(predict(MEM, at = "cv1se", type = "coef")), nrow(MEM$fit$fit$beta))
expect_equal(nrow(predict(SRLp, at = "cv1se", type = "coef")), nrow(SRLp$fit$fit$beta))
expect_equal(length(coef(SRL, at = "cv1se")), nrow(SRL$fit$fit$beta))
expect_equal(length(coef(APL, at = "cv1se")), nrow(SRL$fit$fit$beta))
expect_equal(length(coef(MEM, at = "cv1se")), nrow(MEM$fit$fit$beta))
expect_equal(length(coef(SRLp, at = "cv1se")), nrow(SRLp$fit$fit$beta))
})
test_that("Detrano MCP functionality", {
expect_silent(SRL <- sparseR(formula = case ~ ., penalty = "MCP", data = cleveland))
expect_silent(APL <- sparseR(formula = case ~ ., penalty = "MCP", data = cleveland, gamma = 0))
expect_silent(MEM <- sparseR(formula = case ~ ., penalty = "MCP", data = cleveland, k = 0))
expect_silent(SRLp <- sparseR(formula = case ~ ., penalty = "MCP", data = cleveland, poly = 2))
formula <- case ~ sex + thal
expect_silent(sparseR(formula, penalty = "MCP", data = cleveland))
expect_silent(sparseR(formula, penalty = "MCP", data = cleveland, gamma = 0))
expect_silent(sparseR(formula, penalty = "MCP", data = cleveland, k = 0))
expect_silent(sparseR(formula, penalty = "MCP", data = cleveland, poly = 2))
expect_silent(sparseR(formula, penalty = "MCP", ncvgamma = 4, data = cleveland))
expect_silent(sparseR(formula, penalty = "MCP", ncvgamma = 4, data = cleveland, gamma = 0))
expect_silent(sparseR(formula, penalty = "MCP", ncvgamma = 4, data = cleveland, k = 0))
expect_silent(sparseR(formula, penalty = "MCP", ncvgamma = 4, data = cleveland, poly = 2))
expect_equal(nrow(predict(SRL, type = "coef")), nrow(SRL$fit$fit$beta))
expect_equal(nrow(predict(APL, type = "coef")), nrow(SRL$fit$fit$beta))
expect_equal(nrow(predict(MEM, type = "coef")), nrow(MEM$fit$fit$beta))
expect_equal(nrow(predict(SRLp, type = "coef")), nrow(SRLp$fit$fit$beta))
expect_equal(length(coef(SRL)), nrow(SRL$fit$fit$beta))
expect_equal(length(coef(APL)), nrow(SRL$fit$fit$beta))
expect_equal(length(coef(MEM)), nrow(MEM$fit$fit$beta))
expect_equal(length(coef(SRLp)), nrow(SRLp$fit$fit$beta))
expect_equal(nrow(predict(SRL, at = "cv1se", type = "coef")), nrow(SRL$fit$fit$beta))
expect_equal(nrow(predict(APL, at = "cv1se", type = "coef")), nrow(SRL$fit$fit$beta))
expect_equal(nrow(predict(MEM, at = "cv1se", type = "coef")), nrow(MEM$fit$fit$beta))
expect_equal(nrow(predict(SRLp, at = "cv1se", type = "coef")), nrow(SRLp$fit$fit$beta))
expect_equal(length(coef(SRL, at = "cv1se")), nrow(SRL$fit$fit$beta))
expect_equal(length(coef(APL, at = "cv1se")), nrow(SRL$fit$fit$beta))
expect_equal(length(coef(MEM, at = "cv1se")), nrow(MEM$fit$fit$beta))
expect_equal(length(coef(SRLp, at = "cv1se")), nrow(SRLp$fit$fit$beta))
})
## Try adding ridging?
test_that("Detrano MCPnet functionality", {
expect_silent(SRL <- sparseR(formula = case ~ ., penalty = "MCP", alpha = .2, data = cleveland))
expect_silent(APL <- sparseR(formula = case ~ ., penalty = "MCP", alpha = .2, data = cleveland, gamma = 0))
expect_silent(MEM <- sparseR(formula = case ~ ., penalty = "MCP", alpha = .2, data = cleveland, k = 0))
expect_silent(SRLp <- sparseR(formula = case ~ ., penalty = "MCP", alpha = .2, data = cleveland, poly = 2))
# Print/summary
expect_output(print(SRL))
expect_output(print(APL))
expect_output(print(MEM))
expect_visible(summary(SRL))
expect_visible(summary(SRLp))
})
# Test pooling of penalties
test_that("pooling works", {
expect_silent(SRL <- sparseR(formula = Sepal.Width ~ ., pool = TRUE, data = iris, poly = 2))
expect_length(val1 <- unique(SRL$results$penalty[SRL$results$Vartype == "Order 1 interaction"]), 1)
expect_length(val2 <- unique(SRL$results$penalty[SRL$results$Vartype == "Order 2 polynomial"]), 1)
expect_equal(val1, val2)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.