#' Network meta-analysis for the whole dataset.
#'
#' Conduct network meta-analysis (Rücker model) for the whole dataset.
#'
#' @param TE Estimate of treatment effect, i.e. difference between
#' first and second treatment (e.g. log odds ratio, mean difference,
#' or log hazard ratio).
#' @param seTE Standard error of treatment estimate.
#' @param treat1 Label/Number for first treatment.
#' @param treat2 Label/Number for second treatment.
#' @param studlab Study labels (important when multi arm studies are
#' included).
#' @param reference Reference treatment group
#' @param names.treat names of treatments
#'
#' @return
#' Within-study standard error, design matrix, summary estimate,
#' heterogeneity from network meta-analysis.
#'
#' @keywords internal
nma <- function(TE, seTE, treat1, treat2, studlab,
reference, names.treat, ...) {
## NMA for the whole dataset
##
met <- netmeta(TE, seTE, treat1, treat2, studlab,
reference.group = reference, ...)
## Use adjusted standard errors from random effects model for
## multi-arm studies
##
if (!is.null(met$seTE.adj.random))
within.se <- met$seTE.adj.random
else
within.se <- met$seTE.adj
## X is the design matrix, the edge-vertex incidence matrix (mxn)
##
X <- createB(met$treat1.pos, met$treat2.pos, met$n)
colnames(X) <- names.treat
rownames(X) <- studlab
## Summary estimates of treatment effects
##
est <- met$TE.random[, reference]
het <- met$tau^2
list(within.se = within.se, X = X, est = est, het = het)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.