View source: R/functions_wrapper.R
create_joint_distribution | R Documentation |
Combines some or all etas into a joint distribution.
The etas must be IIVs and cannot be fixed. Initial estimates for covariance between the etas is dependent on whether the model has results from a previous run. In that case, the correlation will be calculated from individual estimates, otherwise correlation will be set to 10%.
create_joint_distribution(model, rvs = NULL, individual_estimates = NULL)
model |
(Model) Pharmpy model |
rvs |
(array(str) (optional)) Sequence of etas or names of etas to combine. If NULL, all etas that are IIVs and non-fixed will be used (full block). NULL is default. |
individual_estimates |
(data.frame (optional)) Optional individual estimates to use for calculation of initial estimates |
(Model) Pharmpy model object
split_joint_distribution : split etas into separate distributions
## Not run:
model <- load_example_model("pheno")
model$random_variables$etas
model <- create_joint_distribution(model, c('ETA_CL', 'ETA_VC'))
model$random_variables$etas
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.